cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333327 Primes p such that, if p = Sum_{0<=i<=k} d_i*10^i is the decimal expansion, p mod (d_i*10^i) is prime for 0<=i<=k.

Original entry on oeis.org

17, 23, 37, 47, 53, 83, 113, 317, 353, 367, 397, 443, 467, 479, 647, 653, 683, 743, 773, 953, 983, 997, 1223, 1283, 1367, 1373, 1433, 1523, 1823, 1997, 2137, 2467, 2677, 2887, 3167, 3389, 3617, 3727, 3967, 4283, 4349, 4523, 4643, 5197, 5827, 5839, 5857, 6113, 6173, 6317, 6337, 6353, 6653, 6863
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 15 2020

Keywords

Comments

No digits are 0. Last digit is not 1.

Examples

			a(7) = 113 is a term because 113, 113 mod 100 = 13, 113 mod 10 = 3, and 113 mod 3 = 2 are all prime.
		

Crossrefs

Contained in A227916.

Programs

  • Maple
    filter:= proc(p) local L;
      if not isprime(p) then return false fi;
      L:= convert(p,base,10);
      if has(0,L) then return false fi;
      andmap(i -> isprime(p mod (L[i]*10^(i-1))), [$1..nops(L)])
    end proc:
    select(filter, [seq(i,i=13..10000,2)]);