This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333328 #21 Apr 23 2020 22:35:09 %S A333328 4,3,6,4,3,12,6,4,3,24,8,36,9,48,10,60,12,6,4,3,120,16,180,18,240,20, %T A333328 360,24,8,720,30,840,32,1260,36,9,1680,40,2520,48,10,5040,60,12,6,4,3, %U A333328 7560,64,10080,72,15120,80,20160,84,25200,90,27720,96,45360,100 %N A333328 Irregular triangle read by rows: T(n,0) = A002182(n) and T(n,k + 1) = A000005(T(n,k)), terminating at the first number which is not highly composite, n > 2. %C A333328 There are two questions related to this array: First, which rows have length greater than any previous row? Second, are there any rows which terminate at a k greater than 6? %H A333328 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=2JM2oImb9Qg">5040 and other Anti-Prime Numbers</a>, Numberphile video (2016). %F A333328 T(n,0) = A002182(n), T(n,k) = A000005(T(n,k - 1)). %e A333328 The irregular triangle T(n,k) starts: %e A333328 n\k 0 1 2 3 4 ... %e A333328 3: 4 3 %e A333328 4: 6 4 3 %e A333328 5: 12 6 4 3 %e A333328 6: 24 8 %e A333328 7: 36 9 %e A333328 8: 48 10 %e A333328 9: 60 12 6 4 3 %e A333328 10: 120 16 %e A333328 11: 180 18 %e A333328 12: 240 20 %e A333328 13: 360 24 8 %e A333328 ... %o A333328 (PARI) A333328_rows(n)={my(N=Map(Mat([1,1;2,2;m=4,3])),p=2,F=[]); while(#N<n,if(numdiv(m)>p,mapput(N,m,p=numdiv(m)); my(M=List([m,q=p])); while(mapisdefined(N,q,&q),listput(M,q));print(#N", "Vec(M)); F=concat(F,Vec(M))); my(s=if(m>=720720,360360,m>=5040,2520,m>=840,420,m>=60,60,2)); until(numdiv(m+=s)>p,));F} %Y A333328 Cf. A000005, A002182, A002183, A189394. %K A333328 nonn,tabf %O A333328 3,1 %A A333328 _Davis Smith_, Mar 15 2020