This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333330 #20 Mar 23 2020 21:12:20 %S A333330 1,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,0,1,0,2,0,1,1,0,1,1,3,2, %T A333330 1,1,1,0,1,0,4,0,4,0,1,1,0,1,1,5,7,9,4,1,1,1,0,1,0,7,0,24,0,7,0,1,1,0, %U A333330 1,1,8,16,54,60,32,8,1,1,1,0,1,0,10,0,128,0,240,0,12,0,1,1,0,1,1,12,37,271,955,1753,930,135,14,1,1 %N A333330 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n unlabeled nodes, n >= 0, k >= 0. %C A333330 Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A333351. Burnside's lemma can be used to extend this method to the unlabeled case. %H A333330 Andrew Howroyd, <a href="/A333330/b333330.txt">Table of n, a(n) for n = 0..350</a> %e A333330 Array begins: %e A333330 ================================================= %e A333330 n\k | 0 1 2 3 4 5 6 7 8 %e A333330 ----+-------------------------------------------- %e A333330 0 | 1 1 1 1 1 1 1 1 1 ... %e A333330 1 | 1 0 0 0 0 0 0 0 0 ... %e A333330 2 | 1 1 1 1 1 1 1 1 1 ... %e A333330 3 | 1 0 1 0 1 0 1 0 1 ... %e A333330 4 | 1 1 2 3 4 5 7 8 10 ... %e A333330 5 | 1 0 2 0 7 0 16 0 37 ... %e A333330 6 | 1 1 4 9 24 54 128 271 582 ... %e A333330 7 | 1 0 4 0 60 0 955 0 12511 ... %e A333330 8 | 1 1 7 32 240 1753 13467 90913 543779 ... %e A333330 9 | 1 0 8 0 930 0 253373 0 35255015 ... %e A333330 ... %Y A333330 Columns k=0..8 are (with interspersed 0's for odd k): A000012, A000012, A002865, A129416, A129418, A129420, A129422, A129424, A129426. %Y A333330 Row n=4 is A001399. %Y A333330 Cf. A051031 (simple graphs), A167625 (with loops), A192517 (not necessarily regular), A328682 (connected), A333351 (labeled nodes). %K A333330 nonn,tabl %O A333330 0,26 %A A333330 _Andrew Howroyd_, Mar 15 2020