A333337 Indices of rows of n consecutive smallest primes in A333238, or -1 if n consecutive smallest primes do not appear in A333238.
0, 1, 2, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 25, 27, 24, 28, 33, 35, 30, 39, 44, 45, 49, 51, 55, 63, 57, 65, 69, 75, 77, 81, 85, 60, 76, 87, 91, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 135, 143, 145, 147, 153, 155, 161, 169, 159, 165, 171, 175, 177
Offset: 0
Examples
Table begins: 0: 0 1 1: 2 4 2: 6 8 9 3: 10 12 15 16 4: 18 20 21 25 27 5: 24 28 33 35 6: 30 39 44 45 49 7: 51 55 63 8: 57 65 9: 60 76 87 91 95 10: 69 75 77 81 85 11: 99 105 12: 111 115 117 119 121 13: 123 125 135 14: 143 145 15: 147 153 155 161 169 16: 159 165 171 175 17: 177 185 187 Consider the table plotting prime p in row m of A333238 at pi(p) place; intervening primes missing from row m are shown by "." as a place holder: m Primes in row m of A333238 --------------------------------- 2: 2 3: . 3 4: 2 5: 2 . 5 6: 2 3 7: 2 . . 7 8: 2 3 9: 2 3 10: 2 3 5 11: 2 3 . . 11 12: 2 3 5 13: 2 3 . . . 13 14: 2 3 . 7 15: 2 3 5 16: 2 3 5 17: 2 3 5 . . . 17 ... There are no primes in rows 0 or 1 of A333238, thus row 0 of this sequence contains {0, 1}. The smallest prime, 2, appears alone in rows 2 and 4 of A333238, thus row 1 of this sequence contains {2, 4}. We have the primes {2, 3} and no other primes in rows {6, 8, 9} in A333238, thus row 2 of this sequence contains {6, 8, 9}. We have the primes {2, 3, 5} and no other primes in rows {10, 12, 15, 16} in A333238, thus row 3 of this sequence contains {10, 12, 15, 16}, etc.
Programs
-
Mathematica
Block[{m = 120, s, a}, a = ConstantArray[{}, m]; s = {Prime@ PrimePi@ m}; Do[If[# <= m, If[FreeQ[a[[#]], Last@ s], a = ReplacePart[a, # -> Union@ Append[a[[#]], Last@ s]], Nothing]; AppendTo[s, Last@ s], If[Last@ s == 2, s = DeleteCases[s, 2]; If[Length@s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]]] &@ Total[s], {i, Infinity}]; s = {0}~Join~Map[Which[Length@ # == 0, 0, And[Length@ # == 1, First@ # == 2], 1, True, If[Union@ # == {1}, Length@ # + 1, -1] &[Differences@ PrimePi@ #, {} -> {2}]] &, a]; Array[-1 + Position[s, #][[All, 1]] /. k_ /; MissingQ@ k -> {-1} &, Max@ s + 1, 0]]
Comments