cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333352 a(n) is the product of indices of the smallest and greatest prime factors of n.

This page as a plain text file.
%I A333352 #13 Mar 16 2020 18:17:27
%S A333352 1,1,4,1,9,2,16,1,4,3,25,2,36,4,6,1,49,2,64,3,8,5,81,2,9,6,4,4,100,3,
%T A333352 121,1,10,7,12,2,144,8,12,3,169,4,196,5,6,9,225,2,16,3,14,6,256,2,15,
%U A333352 4,16,10,289,3,324,11,8,1,18,5,361,7,18,4,400,2,441,12,6,8,20,6,484,3
%N A333352 a(n) is the product of indices of the smallest and greatest prime factors of n.
%H A333352 Peter Kagey, <a href="/A333352/b333352.txt">Table of n, a(n) for n = 1..10000</a>
%H A333352 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A333352 If n = Product (p_j^k_j) then a(n) = min{pi(p_j)} * max{pi(p_j)}, where pi = A000720.
%F A333352 a(n) = A055396(n) * A061395(n) for n > 1.
%F A333352 a(2*n) = A061395(n) for n > 1.
%F A333352 a(n^k) = a(n) for k > 0
%F A333352 a(2*prime(n)^k) = n for k > 0.
%F A333352 a(prime(n)^k) = n^2 for k > 0.
%F A333352 a(n!) = pi(n) for n > 1.
%F A333352 a(A002110(n)) = n.
%e A333352 a(315) = a(3^2 * 5 * 7) = a(prime(2)^2 * prime(3) * prime(4)) = 2 * 4 = 8.
%t A333352 a[1] = 1; a[n_] := PrimePi[FactorInteger[n] [[1, 1]]] PrimePi[ FactorInteger[ n] [[-1, 1]]]; Table[a[n], {n, 1, 80}]
%o A333352 (PARI) a(n) = if (n==1, 1, my(f=factor(n)[,1]); primepi(vecmin(f))*primepi(vecmax(f))); \\ _Michel Marcus_, Mar 16 2020
%Y A333352 Cf. A000079 (positions of 1's), A000720, A002110, A006530, A020639, A033845 (positions of 2's), A055396, A061395, A066048, A156061, A243055.
%K A333352 nonn
%O A333352 1,3
%A A333352 _Ilya Gutkovskiy_, Mar 15 2020