This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333355 #36 Dec 20 2024 19:12:28 %S A333355 0,1,0,1,1,1,1,2,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,2,2,2, %T A333355 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3, %U A333355 3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2 %N A333355 Number of bits in binary expansion of n minus the number of digits of n when written in base 3. %C A333355 Record highs are at n = 2^A054414. All n=2^k >= 2 are increases, all n=3^j are decreases, and there is either one or none 3^j between 2^(k-1) and 2^k. When one, a(2^k) = a(2^(k-1)) so not a record high. When none, a(2^k) = a(2^(k-1)) + 1 which is a record high. If 2^k and 2^(k-1) are the same length in ternary then there is no 3^j between them. This is when 2^k has most significant ternary digit 2 since 2^(k-1) >= 3^j is 2^k >= 2*3^j. These k are A054414. Non-record increases are at its complement n = 2^A020914 >= 2. - _Kevin Ryde_, Apr 04 2020 %F A333355 a(n) = A000523(n) - A062153(n) = floor(log_2(n)) - floor(log_3(n)). %F A333355 a(n) = length(A007088(n)) - length(A007089(n)). %e A333355 a(8) = 2 = 4 - 2 for binary 1000 and ternary 22. %e A333355 a(64) = 3 = 7 - 4 for binary 1000000 and ternary 2101. %p A333355 a:= n-> ilog[2](n)-ilog[3](n): %p A333355 seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 15 2020 %t A333355 a[n_]: = Floor @ Log[2, n] - Floor @ Log[3, n]; Array[a, 100] (* _Amiram Eldar_, Mar 16 2020 *) %o A333355 (Rexx) %o A333355 L = 1 ; M = 1 ; B = 2 ; T = 3 ; S = 0 %o A333355 do N = 2 while length( S ) < 258 %o A333355 if B = N then do ; B = B * 2 ; L = L + 1 ; end %o A333355 if T = N then do ; T = T * 3 ; M = M + 1 ; end %o A333355 S = S || ',' L - M %o A333355 end N %o A333355 say S ; return S %o A333355 (PARI) a(n) = logint(n,2) - logint(n,3); \\ _Kevin Ryde_, May 15 2020 %Y A333355 Cf. A007088 ( binary), A000523 (floor(log_2(n))), A029837. %Y A333355 Cf. A007089 (ternary), A062153 (floor(log_3(n))), A117966. %K A333355 nonn,base,easy %O A333355 1,8 %A A333355 _Frank Ellermann_, Mar 15 2020