This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333364 #16 Sep 14 2022 07:27:06 %S A333364 2,3,7,11,13,17,19,23,29,37,41,43,47,53,61,67,71,73,79,83,89,97,101, %T A333364 103,107,109,113,127,131,137,139,149,151,157,163,167,173,181,191,193, %U A333364 197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283 %N A333364 Indices of primes p whose order of primeness A078442(p) is prime. %C A333364 All terms are prime. %H A333364 Alois P. Heinz, <a href="/A333364/b333364.txt">Table of n, a(n) for n = 1..10000</a> %H A333364 N. Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a> %H A333364 N. Fernandez, <a href="/A006450/a006450.html">An order of primeness</a> [cached copy, included with permission of the author] %F A333364 { p in primes : A049076(p) is prime }. %F A333364 a(n) = pi(A333353(n)), with pi = A000720. %e A333364 11 is a term: prime(11) = 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720. %p A333364 b:= proc(n) option remember; %p A333364 `if`(isprime(n), 1+b(numtheory[pi](n)), 0) %p A333364 end: %p A333364 a:= proc(n) option remember; local p; %p A333364 p:= `if`(n=1, 1, a(n-1)); %p A333364 do p:= nextprime(p); %p A333364 if isprime(b(p)+1) then break fi %p A333364 od; p %p A333364 end: %p A333364 seq(a(n), n=1..62); %t A333364 b[n_] := b[n] = If[PrimeQ[n], 1 + b[PrimePi[n]], 0]; %t A333364 a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n - 1]]; %t A333364 While[True, p = NextPrime[p]; If[PrimeQ[b[p] + 1], Break[]]]; p]; %t A333364 Table[a[n], {n, 1, 62}] (* _Jean-François Alcover_, Sep 14 2022, after _Alois P. Heinz_ *) %Y A333364 Cf. A000040, A000720, A049076, A333353. %K A333364 nonn %O A333364 1,1 %A A333364 _Alois P. Heinz_, Mar 16 2020