cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333365 T(n,k) is the number of times that prime(k) is the least part in a partition of n into prime parts; triangle T(n,k), n >= 0, 1 <= k <= max(1,A000720(A331634(n))), read by rows.

This page as a plain text file.
%I A333365 #36 Mar 30 2021 12:30:12
%S A333365 0,0,1,0,1,1,1,0,1,1,1,2,0,0,1,2,1,3,1,3,1,1,4,1,0,0,1,5,1,1,6,2,0,0,
%T A333365 0,1,7,2,0,1,9,2,1,10,3,1,12,3,1,0,0,0,1,14,3,1,1,17,4,1,0,0,0,0,1,19,
%U A333365 5,1,1,23,5,1,1,26,6,2,0,1,30,7,2,0,0,0,0,0,1
%N A333365 T(n,k) is the number of times that prime(k) is the least part in a partition of n into prime parts; triangle T(n,k), n >= 0, 1 <= k <= max(1,A000720(A331634(n))), read by rows.
%H A333365 Alois P. Heinz, <a href="/A333365/b333365.txt">Rows n = 0..1000, flattened</a>
%F A333365 T(n,pi(n)) = A010051(n) for n > 1.
%F A333365 T(p,pi(p)) = 1 if p is prime.
%F A333365 T(prime(k),k) = 1 for k >= 1.
%F A333365 Recursion: T(n,k) = Sum_{q=k..pi(n-p)} T(n-p, q) with p := prime(k) and T(n,k) = 0 if n < p, or 1 if n = p. - _David James Sycamore_, Mar 28 2020
%e A333365 In the A000607(11) = 6 partitions of 11 into prime parts, (11), 335, 227, 2225, 2333, 22223 the least parts are 11 = prime(5) (once), 3 = prime(2)(once), and 2 = prime(1) (four times), whereas 5 and 7 (prime(3) and prime(4)) do not occur. Thus row 11 is [4,1,0,0,1].
%e A333365 Triangle T(n,k) begins:
%e A333365    0    ;
%e A333365    0    ;
%e A333365    1    ;
%e A333365    0, 1    ;
%e A333365    1       ;
%e A333365    1, 0, 1    ;
%e A333365    1, 1       ;
%e A333365    2, 0, 0, 1    ;
%e A333365    2, 1          ;
%e A333365    3, 1          ;
%e A333365    3, 1, 1       ;
%e A333365    4, 1, 0, 0, 1    ;
%e A333365    5, 1, 1          ;
%e A333365    6, 2, 0, 0, 0, 1    ;
%e A333365    7, 2, 0, 1          ;
%e A333365    9, 2, 1             ;
%e A333365   10, 3, 1             ;
%e A333365   12, 3, 1, 0, 0, 0, 1    ;
%e A333365   14, 3, 1, 1             ;
%e A333365   17, 4, 1, 0, 0, 0, 0, 1    ;
%e A333365   19, 5, 1, 1                ;
%e A333365   ...
%p A333365 b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q->
%p A333365       add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p))))
%p A333365     end:
%p A333365 T:= proc(n) option remember; (p-> seq(`if`(isprime(i),
%p A333365       coeff(p, x, i), [][]), i=2..max(2,degree(p))))(b(n, 2, x))
%p A333365     end:
%p A333365 seq(T(n), n=0..23);
%t A333365 b[n_, p_, t_] := b[n, p, t] = If[n == 0, 1, If[p > n, 0, With[{q = NextPrime[p]}, Sum[b[n - p*j, q, 1], {j, 1, n/p}]*t^p + b[n, q, t]]]];
%t A333365 T[n_] := If[n < 2, {0}, MapIndexed[If[PrimeQ[#2[[1]]], #1, Nothing]&, Rest @ CoefficientList[b[n, 2, x], x]]];
%t A333365 T /@ Range[0, 23] // Flatten (* _Jean-François Alcover_, Mar 30 2021, after _Alois P. Heinz_ *)
%Y A333365 Columns k=1-2 give: A000607(n-2) for n>1, A099773(n-3) for n>2.
%Y A333365 Row sums give A000607 for n>0.
%Y A333365 Length of n-th row is A000720(A331634(n)) for n>1.
%Y A333365 Indices of rows without 1's: A330433.
%Y A333365 Cf. A000040, A000720, A010051, A333129, A333238, A333259.
%K A333365 nonn,tabf
%O A333365 0,12
%A A333365 _Alois P. Heinz_, Mar 16 2020