This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333365 #36 Mar 30 2021 12:30:12 %S A333365 0,0,1,0,1,1,1,0,1,1,1,2,0,0,1,2,1,3,1,3,1,1,4,1,0,0,1,5,1,1,6,2,0,0, %T A333365 0,1,7,2,0,1,9,2,1,10,3,1,12,3,1,0,0,0,1,14,3,1,1,17,4,1,0,0,0,0,1,19, %U A333365 5,1,1,23,5,1,1,26,6,2,0,1,30,7,2,0,0,0,0,0,1 %N A333365 T(n,k) is the number of times that prime(k) is the least part in a partition of n into prime parts; triangle T(n,k), n >= 0, 1 <= k <= max(1,A000720(A331634(n))), read by rows. %H A333365 Alois P. Heinz, <a href="/A333365/b333365.txt">Rows n = 0..1000, flattened</a> %F A333365 T(n,pi(n)) = A010051(n) for n > 1. %F A333365 T(p,pi(p)) = 1 if p is prime. %F A333365 T(prime(k),k) = 1 for k >= 1. %F A333365 Recursion: T(n,k) = Sum_{q=k..pi(n-p)} T(n-p, q) with p := prime(k) and T(n,k) = 0 if n < p, or 1 if n = p. - _David James Sycamore_, Mar 28 2020 %e A333365 In the A000607(11) = 6 partitions of 11 into prime parts, (11), 335, 227, 2225, 2333, 22223 the least parts are 11 = prime(5) (once), 3 = prime(2)(once), and 2 = prime(1) (four times), whereas 5 and 7 (prime(3) and prime(4)) do not occur. Thus row 11 is [4,1,0,0,1]. %e A333365 Triangle T(n,k) begins: %e A333365 0 ; %e A333365 0 ; %e A333365 1 ; %e A333365 0, 1 ; %e A333365 1 ; %e A333365 1, 0, 1 ; %e A333365 1, 1 ; %e A333365 2, 0, 0, 1 ; %e A333365 2, 1 ; %e A333365 3, 1 ; %e A333365 3, 1, 1 ; %e A333365 4, 1, 0, 0, 1 ; %e A333365 5, 1, 1 ; %e A333365 6, 2, 0, 0, 0, 1 ; %e A333365 7, 2, 0, 1 ; %e A333365 9, 2, 1 ; %e A333365 10, 3, 1 ; %e A333365 12, 3, 1, 0, 0, 0, 1 ; %e A333365 14, 3, 1, 1 ; %e A333365 17, 4, 1, 0, 0, 0, 0, 1 ; %e A333365 19, 5, 1, 1 ; %e A333365 ... %p A333365 b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q-> %p A333365 add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p)))) %p A333365 end: %p A333365 T:= proc(n) option remember; (p-> seq(`if`(isprime(i), %p A333365 coeff(p, x, i), [][]), i=2..max(2,degree(p))))(b(n, 2, x)) %p A333365 end: %p A333365 seq(T(n), n=0..23); %t A333365 b[n_, p_, t_] := b[n, p, t] = If[n == 0, 1, If[p > n, 0, With[{q = NextPrime[p]}, Sum[b[n - p*j, q, 1], {j, 1, n/p}]*t^p + b[n, q, t]]]]; %t A333365 T[n_] := If[n < 2, {0}, MapIndexed[If[PrimeQ[#2[[1]]], #1, Nothing]&, Rest @ CoefficientList[b[n, 2, x], x]]]; %t A333365 T /@ Range[0, 23] // Flatten (* _Jean-François Alcover_, Mar 30 2021, after _Alois P. Heinz_ *) %Y A333365 Columns k=1-2 give: A000607(n-2) for n>1, A099773(n-3) for n>2. %Y A333365 Row sums give A000607 for n>0. %Y A333365 Length of n-th row is A000720(A331634(n)) for n>1. %Y A333365 Indices of rows without 1's: A330433. %Y A333365 Cf. A000040, A000720, A010051, A333129, A333238, A333259. %K A333365 nonn,tabf %O A333365 0,12 %A A333365 _Alois P. Heinz_, Mar 16 2020