cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333369 Positive integers in which any odd digit, if present, occurs an odd number of times, and any even digit, if present, occurs an even number of times.

This page as a plain text file.
%I A333369 #33 Aug 04 2022 16:30:35
%S A333369 1,3,5,7,9,13,15,17,19,22,31,35,37,39,44,51,53,57,59,66,71,73,75,79,
%T A333369 88,91,93,95,97,100,111,122,135,137,139,144,153,157,159,166,173,175,
%U A333369 179,188,193,195,197,212,221,223,225,227,229,232,252,272,292,300,315,317,319,322
%N A333369 Positive integers in which any odd digit, if present, occurs an odd number of times, and any even digit, if present, occurs an even number of times.
%C A333369 Inspired by the 520th problem of Project Euler (see link) where such a number is called a "simber".
%C A333369 This sequence has little mathematical interest. The name "simber", which might be interpreted as "silly number", is deprecated. - _N. J. A. Sloane_, Aug 04 2022
%C A333369 The number of terms with respectively 1, 2, 3, ... digits is 5, 24, 130, ...
%H A333369 Michel Marcus, <a href="/A333369/b333369.txt">Table of n, a(n) for n = 1..10000</a>
%H A333369 Project Euler, <a href="https://projecteuler.net/problem=520">Problem 520: Simbers</a>.
%e A333369 656 is a 3-digit term because it has one 5 and two 6's.
%e A333369 447977 is a 6-digit term because it has one 9, two 4's and three 7's.
%t A333369 seqQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Range[300], seqQ] (* _Amiram Eldar_, Mar 17 2020 *)
%o A333369 (PARI) isok(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ _Michel Marcus_, Mar 17 2020
%o A333369 (Python)
%o A333369 def ok(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
%o A333369 print([k for k in range(323) if ok(k)]) # _Michael S. Branicky_, Apr 15 2022
%Y A333369 Cf. A108571 (finite subsequence), A353007.
%K A333369 nonn,base
%O A333369 1,2
%A A333369 _Bernard Schott_, Mar 17 2020