This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333370 #10 Feb 16 2025 08:33:59 %S A333370 1,4,16,84,576,5820,72720,1181460,21984480,493882620,13996733520, %T A333370 430612001820,15742074348000,641147559872820,27488197348531920, %U A333370 1286344285877911260,67817877972050366160,3984226025421591129180,242703493548359285922480,16211176424801583698573100 %N A333370 Convolution of primorial numbers (A002110) with themselves. %H A333370 Alois P. Heinz, <a href="/A333370/b333370.txt">Table of n, a(n) for n = 0..350</a> %H A333370 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Primorial.html">Primorial</a> %H A333370 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A333370 G.f.: (Sum_{k>=0} prime(k)# * x^k)^2, where prime()# = A002110. %F A333370 a(n) = Sum_{k=0..n} prime(k)# * prime(n-k)#. %p A333370 p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end: %p A333370 a:= n-> add(p(i)*p(n-i), i=0..n): %p A333370 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 17 2020 %t A333370 primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}] %Y A333370 Cf. A002110, A003149, A014342, A333371. %K A333370 nonn %O A333370 0,2 %A A333370 _Ilya Gutkovskiy_, Mar 17 2020