This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333371 #9 Feb 16 2025 08:33:59 %S A333371 1,4,20,132,1116,12420,171300,2884980,56674380,1289511300,34769949060, %T A333371 1063909626780,37255008811020,1470406699982220,63114539746598340, %U A333371 2936218980067393020,150241360192861037100,8497891914008911514100,514514062115556069627060 %N A333371 Exponential convolution of primorial numbers (A002110) with themselves. %H A333371 Alois P. Heinz, <a href="/A333371/b333371.txt">Table of n, a(n) for n = 0..350</a> %H A333371 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Primorial.html">Primorial</a> %H A333371 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A333371 E.g.f.: (Sum_{k>=0} prime(k)# * x^k / k!)^2, where prime()# = A002110. %F A333371 a(n) = Sum_{k=0..n} binomial(n,k) * prime(k)# * prime(n-k)#. %p A333371 p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end: %p A333371 a:= n-> add(p(i)*p(n-i)*binomial(n, i), i=0..n): %p A333371 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 17 2020 %t A333371 primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[Binomial[n, k] primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 18}] %Y A333371 Cf. A002110, A014345, A052517, A062119, A136104, A333370. %K A333371 nonn %O A333371 0,2 %A A333371 _Ilya Gutkovskiy_, Mar 17 2020