This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333380 #4 Mar 21 2020 16:36:01 %S A333380 0,1,3,5,7,11,15,21,23,31,37,43,47,63,75,85,87,95,127,149,151,171,175, %T A333380 191,255,293,299,303,341,343,351,383,511,549,587,597,599,607,683,687, %U A333380 703,767,1023,1099,1173,1175,1195,1199,1215,1365,1367,1375,1407,1535 %N A333380 Numbers k such that the k-th composition in standard order is weakly decreasing and covers an initial interval of positive integers. %C A333380 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. %F A333380 Intersection of A333217 and A114994. %e A333380 The sequence of terms together with the corresponding compositions begins: %e A333380 0: () 127: (1,1,1,1,1,1,1) %e A333380 1: (1) 149: (3,2,2,1) %e A333380 3: (1,1) 151: (3,2,1,1,1) %e A333380 5: (2,1) 171: (2,2,2,1,1) %e A333380 7: (1,1,1) 175: (2,2,1,1,1,1) %e A333380 11: (2,1,1) 191: (2,1,1,1,1,1,1) %e A333380 15: (1,1,1,1) 255: (1,1,1,1,1,1,1,1) %e A333380 21: (2,2,1) 293: (3,3,2,1) %e A333380 23: (2,1,1,1) 299: (3,2,2,1,1) %e A333380 31: (1,1,1,1,1) 303: (3,2,1,1,1,1) %e A333380 37: (3,2,1) 341: (2,2,2,2,1) %e A333380 43: (2,2,1,1) 343: (2,2,2,1,1,1) %e A333380 47: (2,1,1,1,1) 351: (2,2,1,1,1,1,1) %e A333380 63: (1,1,1,1,1,1) 383: (2,1,1,1,1,1,1,1) %e A333380 75: (3,2,1,1) 511: (1,1,1,1,1,1,1,1,1) %e A333380 85: (2,2,2,1) 549: (4,3,2,1) %e A333380 87: (2,2,1,1,1) 587: (3,3,2,1,1) %e A333380 95: (2,1,1,1,1,1) 597: (3,2,2,2,1) %t A333380 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A333380 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333380 Select[Range[0,1000],normQ[stc[#]]&&GreaterEqual@@stc[#]&] %Y A333380 Sequences covering an initial interval are counted by A000670. %Y A333380 Compositions in standard order are A066099. %Y A333380 Weakly decreasing runs are counted by A124765. %Y A333380 Removing the covering condition gives A114994. %Y A333380 Removing the ordering condition gives A333217. %Y A333380 The strictly decreasing case is A246534. %Y A333380 The unequal version is A333218. %Y A333380 The weakly increasing version is A333379. %Y A333380 Cf. A000120, A000225, A029931, A048793, A070939, A164894, A225620, A228351, A233564, A272919, A333219. %K A333380 nonn %O A333380 1,3 %A A333380 _Gus Wiseman_, Mar 21 2020