This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333383 #6 May 16 2020 14:28:21 %S A333383 1,2,7,13,14,22,28,35,38,45,49,54,60,64,69,70,75,78,85,89,95,104,109, %T A333383 116,117,122,123,144,148,152,155,159,160,163,164,173,178,182,183,184, %U A333383 187,194,195,198,201,206,212,215,218,219,225,226,230,236,237,238,244 %N A333383 First index of weakly increasing prime quartets. %C A333383 Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k) <= g(k + 1) <= g(k + 2). %e A333383 The first 10 weakly increasing prime quartets: %e A333383 2 3 5 7 %e A333383 3 5 7 11 %e A333383 17 19 23 29 %e A333383 41 43 47 53 %e A333383 43 47 53 59 %e A333383 79 83 89 97 %e A333383 107 109 113 127 %e A333383 149 151 157 163 %e A333383 163 167 173 179 %e A333383 197 199 211 223 %e A333383 For example, 43 is the 14th prime, and the primes (43,47,53,59) have differences (4,6,6), which are weakly increasing, so 14 is in the sequence. %t A333383 ReplaceList[Array[Prime,100],{___,x_,y_,z_,t_,___}/;y-x<=z-y<=t-z:>PrimePi[x]] %Y A333383 Prime gaps are A001223. %Y A333383 Second prime gaps are A036263. %Y A333383 Strictly decreasing prime quartets are A054804. %Y A333383 Strictly increasing prime quartets are A054819. %Y A333383 Equal prime quartets are A090832. %Y A333383 Weakly increasing prime quartets are A333383 (this sequence). %Y A333383 Weakly decreasing prime quartets are A333488. %Y A333383 Unequal prime quartets are A333490. %Y A333383 Partially unequal prime quartets are A333491. %Y A333383 Positions of adjacent equal prime gaps are A064113. %Y A333383 Positions of strict ascents in prime gaps are A258025. %Y A333383 Positions of strict descents in prime gaps are A258026. %Y A333383 Positions of adjacent unequal prime gaps are A333214. %Y A333383 Positions of weak ascents in prime gaps are A333230. %Y A333383 Positions of weak descents in prime gaps are A333231. %Y A333383 Indices of weakly increasing rows of A066099 are A225620. %Y A333383 Lengths of maximal weakly increasing subsequences of prime gaps: A333215. %Y A333383 Lengths of maximal strictly decreasing subsequences of prime gaps: A333252. %Y A333383 Cf. A000040, A006560, A031217, A054800, A059044, A084758, A089180, A333253. %K A333383 nonn %O A333383 1,2 %A A333383 _Gus Wiseman_, May 14 2020