A333385 a(n) = 3^n + 2 * 17^n for n >= 0.
3, 37, 587, 9853, 167123, 2839957, 48275867, 820679533, 13951521443, 237175772677, 4031987859947, 68543792792413, 1165244474990963, 19809156067406197, 336755653123584827, 5724846103033980493, 97322383751376783683, 1654480523772802668517
Offset: 0
Examples
a(4) = 3^4 + 2 * 17^4 = 167123 = 7 * 19 * 1031 is not a perfect square.
References
- S. Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of British Mathematical Olympiad 1991, page 186.
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 1 pp. 57 and 115 (1991).
Links
- Colin Barker, Table of n, a(n) for n = 0..800
- British Mathematical Olympiad, Problem 1, 1991.
- Index to sequences related to Olympiads.
- Index entries for linear recurrences with constant coefficients, signature (20,-51).
Programs
-
Maple
S:=seq(3^n+2*17^n, n=0..40);
-
Mathematica
a[n_] := 3^n + 2 * 17^n ; Array[a, 18, 0] (* Amiram Eldar, Mar 18 2020 *)
-
PARI
Vec((3 - 23*x) / ((1 - 3*x)*(1 - 17*x)) + O(x^20)) \\ Colin Barker, Mar 18 2020
Formula
From Colin Barker, Mar 18 2020: (Start)
G.f.: (3 - 23*x) / ((1 - 3*x)*(1 - 17*x)).
a(n) = 20*a(n-1) - 51*a(n-2) for n>1.
(End)
Comments