This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333394 #22 Aug 21 2020 05:49:05 %S A333394 0,1,4,9,18,34,62,110,192,331,565,958,1615,2710,4531,7552,12554,20823, %T A333394 34472,56972,94020,154959,255102,419532,689312,1131632,1856382, %U A333394 3043208,4985674,8163321,13359207,21851594,35726470,58386958,95383471,155766277,254288786 %N A333394 Total length of all longest runs of 0's in solus bitstrings of length n. %C A333394 A bitstring is solus if all of its 1's are isolated. %C A333394 The number of these bitstrings is A000045(n+2). %H A333394 Alois P. Heinz, <a href="/A333394/b333394.txt">Table of n, a(n) for n = 0..1000</a> %H A333394 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus distributions</a>, arXiv:2003.09458 [math.CO], 2020. %F A333394 G.f.: Sum_{k>=1} (1+x)/(1-x-x^2)-(1+x-x^k-x^(k+1))/(1-x-x^2+x^(k+1)). %e A333394 a(4) = 18 because the A000045(6) = 8 solus bitstrings of length 4 are 0000, 1000, 0100, 0010, 0001, 1010, 0101, 1001 and the longest 0-runs contribute 4+3+2+2+3+1+1+2 = 18. %p A333394 b:= proc(n, w, m, s) option remember; `if`(n=0, m, %p A333394 b(n-1, w+1, max(m, w+1), irem(s, 10)*10+0)+ %p A333394 `if`(s in [01, 21], 0, b(n-1, 0, m, irem(s, 10)*10+1))) %p A333394 end: %p A333394 a:= n-> b(n, 0, 0, 22): %p A333394 seq(a(n), n=0..39); # _Alois P. Heinz_, Mar 18 2020 %t A333394 b[n_, w_, m_, s_] := b[n, w, m, s] = If[n == 0, m, b[n-1, w+1, Max[m, w+1], Mod[s, 10]*10+0]+If[MatchQ[s, 01|21], 0, b[n-1, 0, m, Mod[s, 10]*10+1]]]; %t A333394 a[n_] := b[n, 0, 0, 22]; %t A333394 a /@ Range[0, 39] (* _Jean-François Alcover_, Aug 21 2020, after _Alois P. Heinz_ *) %Y A333394 Cf. A000045, A119706, A333395, A333396. %K A333394 nonn %O A333394 0,3 %A A333394 _Steven Finch_, Mar 18 2020