This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333395 #34 Mar 24 2020 19:08:44 %S A333395 0,2,7,16,32,62,118,221,409,751,1371,2492,4513,8148,14674,26371,47304, %T A333395 84717,151508,270622,482849,860661,1532745,2727483,4849988,8618549, %U A333395 15306204,27168300,48199022,85469639,151495120,268418323,475405955,841718780,1489804565,2636091495 %N A333395 Total length of all longest runs of 1's in multus bitstrings of length n. %C A333395 A bitstring is multus if each of its 1's possess at least one neighboring 1. %C A333395 The number of these bitstrings is A005251(n+2). %H A333395 Alois P. Heinz, <a href="/A333395/b333395.txt">Table of n, a(n) for n = 1..985</a> %H A333395 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus distributions</a>, arXiv:2003.09458 [math.CO], 2020. %F A333395 G.f.: -x/((1-x)*(1-x+x^2)) + x*Sum_{k>=1} (1+x^2)/(1-2*x+x^2-x^3) - (1+x^2-x^(k-1)-x^k)/(1-2*x+x^2-x^3+x^(k+1)). %e A333395 a(4) = 16 because the seven multus bitstrings of length 4 are 0000, 1100, 0110, 0011, 1110, 0111, 1111 and the longest 1-runs contribute 0+2+2+2+3+3+4 = 16. %t A333395 gf[n_] := x/((x - 1) (1 - x + x^2)) + Sum[((x - 1) x^k)/((x^3 - x^2 + 2 x - 1) (x^(k + 1) - x^3 + x^2 - 2 x + 1)), {k, 1, n}]; %t A333395 ser[n_] := Series[gf[n], {x, 0, n}]; %t A333395 Drop[CoefficientList[ser[36], x], 1] (* _Peter Luschny_, Mar 19 2020 *) %Y A333395 Cf. A005251, A119706, A333394, A333396. %K A333395 nonn %O A333395 1,2 %A A333395 _Steven Finch_, Mar 18 2020