cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333396 Total length of all longest runs of 0's in multus bitstrings of length n.

This page as a plain text file.
%I A333396 #29 Mar 24 2020 19:09:04
%S A333396 1,2,5,11,23,45,87,165,309,573,1056,1934,3527,6408,11605,20960,37771,
%T A333396 67928,121949,218595,391302,699610,1249475,2229329,3974083,7078658,
%U A333396 12599318,22410548,39837420,70775727,125675525,223052519,395702395,701695820,1243827018,2204007329
%N A333396 Total length of all longest runs of 0's in multus bitstrings of length n.
%C A333396 A bitstring is multus if each of its 1's possess at least one neighboring 1.
%C A333396 The number of these bitstrings is A005251(n+2).
%H A333396 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus distributions</a>, arXiv:2003.09458 [math.CO], 2020.
%F A333396 G.f.: x*Sum_{k>=1} (1+x^2)/(1-2*x+x^2-x^3)-(1+x^2-x^(k-1)+x^k-2*x^(k+1))/(1-2*x+x^2-x^3+x^(k+2)).
%e A333396 a(4) = 11 because the seven multus bitstrings of length 4 are 0000, 1100, 0110, 0011, 1110, 0111, 1111 and the longest 0-runs contribute 4+2+1+2+1+1+0 = 11.
%Y A333396 Cf. A005251, A119706, A333394, A333395.
%K A333396 nonn
%O A333396 1,2
%A A333396 _Steven Finch_, Mar 18 2020