cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333420 Table T(n,k) read by upward antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}.

This page as a plain text file.
%I A333420 #20 Mar 31 2020 10:40:40
%S A333420 1,2,3,6,25,6,24,343,110,10,120,6561,3375,324,15,720,161051,144400,
%T A333420 17576,756,21,5040,4826809,7962624,1336336,64000,1521,28,40320,
%U A333420 170859375,535387328,130691232,7595536,185193,2756,36,3628800,6975757441
%N A333420 Table T(n,k) read by upward antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}.
%C A333420 A dual sequence to A331889.
%C A333420    k         1          2         3         4       5        6         7       8       9
%C A333420   --------------------------------------------------------------------------------------
%C A333420 n  1|        1          3         6        10      15       21        28      36      45
%C A333420    2|        2         25       110       324     756     1521      2756    4624    7310
%C A333420    3|        6        343      3375     17576   64000   185193    456533 1000000 2000376
%C A333420    4|       24       6561    144400   1336336 7595536 31640625 106131204
%C A333420    5|      120     161051   7962624 130691232
%C A333420    6|      720    4826809 535387328
%C A333420    7|     5040  170859375
%C A333420    8|    40320 6975757441
%C A333420    9|  3628800
%C A333420   10| 39916800
%H A333420 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020.
%F A333420 T(n,k) <= floor((k*(k*n+1)/2)^n) with equality if k = 2*t+n*u for nonnegative integers t and u.
%F A333420 T(n,1) = n! = A000142(n).
%F A333420 T(1,k) = k*(k+1)/2 = A000217(k).
%F A333420 T(n,2) = (2*n+1)^n = A085527(n).
%F A333420 If n is even, k is odd and k >= n-1, then T(n,k) = ((k^2*(k*n+1)^2-1)/4)^(n/2).
%o A333420 (Python)
%o A333420 from itertools import combinations, permutations
%o A333420 from sympy import factorial
%o A333420 def T(n,k): # T(n,k) for A333420
%o A333420     if k == 1:
%o A333420         return int(factorial(n))
%o A333420     if n == 1:
%o A333420         return k*(k+1)//2
%o A333420     if k % 2 == 0 or (k >= n-1 and n % 2 == 1):
%o A333420         return (k*(k*n+1)//2)**n
%o A333420     if k >= n-1 and n % 2 == 0 and k % 2 == 1:
%o A333420         return ((k**2*(k*n+1)**2-1)//4)**(n//2)
%o A333420     nk = n*k
%o A333420     nktuple = tuple(range(1,nk+1))
%o A333420     nkset = set(nktuple)
%o A333420     count = 0
%o A333420     for firsttuple in combinations(nktuple,n):
%o A333420         nexttupleset = nkset-set(firsttuple)
%o A333420         for s in permutations(sorted(nexttupleset),nk-2*n):
%o A333420             llist = sorted(nexttupleset-set(s),reverse=True)
%o A333420             t = list(firsttuple)
%o A333420             for i in range(0,k-2):
%o A333420                 itn = i*n
%o A333420                 for j in range(n):
%o A333420                         t[j] += s[itn+j]
%o A333420             t.sort()
%o A333420             w = 1
%o A333420             for i in range(n):
%o A333420                 w *= llist[i]+t[i]
%o A333420             if w > count:
%o A333420                 count = w
%o A333420     return count
%Y A333420 Cf. A000142, A000217, A085527, A331889.
%K A333420 nonn,more,tabl
%O A333420 1,2
%A A333420 _Chai Wah Wu_, Mar 23 2020