cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

This page as a plain text file.
%I A333429 #21 Jan 05 2021 09:54:19
%S A333429 1,1,2,1,3,0,1,2,9,0,1,5,10,27,0,1,2,25,50,81,0,1,7,3,125,250,171,0,1,
%T A333429 2,49,9,205,1250,243,0,1,3,10,203,21,625,5050,513,0,1,2,9,50,343,26,
%U A333429 1025,6250,729,0,1,11,5,27,250,1379,27,2525,11810,1539,0
%N A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
%H A333429 Alois P. Heinz, <a href="/A333429/b333429.txt">Antidiagonals n = 1..20, flattened</a>
%e A333429 Square array A(n,k) begins:
%e A333429   1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
%e A333429   2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
%e A333429   0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
%e A333429   0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
%e A333429   0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
%e A333429   0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
%e A333429   0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
%e A333429   0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
%e A333429   0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
%e A333429   0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
%p A333429 A:= proc() local h, p; p:= proc() [1] end;
%p A333429       proc(n, k) if k=1 then `if`(n<3, n, 0) else
%p A333429         while nops(p(k))<n do for h from 1+p(k)[-1]
%p A333429           while k&^h+1 mod h <> 0 do od;
%p A333429           p(k):= [p(k)[], h]
%p A333429         od; p(k)[n] fi
%p A333429       end
%p A333429     end():
%p A333429 seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
%t A333429 dmax = 12;
%t A333429 mmax = 2^(dmax+3);
%t A333429 col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
%t A333429 A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
%t A333429 Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* _Jean-François Alcover_, Jan 05 2021 *)
%Y A333429 Columns k=1-16 give: A130779 (for n>=1), A006521, A015949, A015950, A015951, A015953, A015954, A015955, A015957, A015958, A015960, A015961, A015963, A015965, A015968, A015969.
%Y A333429 Rows n=1-2 give: A000012, A092067.
%Y A333429 Main diagonal gives A333430.
%Y A333429 Cf. A333432.
%K A333429 nonn,tabl
%O A333429 1,3
%A A333429 _Alois P. Heinz_, Mar 20 2020