This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333438 #32 Jun 29 2023 13:21:20 %S A333438 4,16,196,8224,1064540,424745876,527417814424,2026136052712752, %T A333438 23910840138416191440,864203211903812503254788, %U A333438 95556814333495667660116008300,32299777937527326896385272155961508,33351573725052992639783414388307775101504,105136332761744656894957880833209728891149151420 %N A333438 Number of self-avoiding walks of any length from NW corner to its adjacent points on an n X n grid or lattice. %H A333438 Ed Wynn, <a href="/A333438/b333438.txt">Table of n, a(n) for n = 2..19</a> %e A333438 a(2) = 4; %e A333438 S--E S E %e A333438 | | %e A333438 *--* %e A333438 S S--* %e A333438 | | %e A333438 E E--* %e A333438 a(3) = 16; %e A333438 S--E S E S E--* S E--* %e A333438 | | | | | | %e A333438 *--* *--*--* * * %e A333438 | | %e A333438 *--*--* %e A333438 S E S E--* S E--* S E %e A333438 | | | | | | | | %e A333438 * * * *--* *--* * * *--* %e A333438 | | | | | | | | %e A333438 *--* *--* *--* *--*--* %e A333438 S S--* S--* S--*--* %e A333438 | | | | %e A333438 E E--* E * E * %e A333438 | | | | %e A333438 *--* *--*--* %e A333438 S--*--* S--*--* S--* S--*--* %e A333438 | | | | %e A333438 E--*--* E *--* E *--* E--* * %e A333438 | | | | | | %e A333438 *--* *--*--* *--* %o A333438 (Python) %o A333438 # Using graphillion %o A333438 from graphillion import GraphSet %o A333438 import graphillion.tutorial as tl %o A333438 def A333438(n): %o A333438 universe = tl.grid(n - 1, n - 1) %o A333438 GraphSet.set_universe(universe) %o A333438 start, goal = 1, 2 %o A333438 paths = GraphSet.paths(start, goal) %o A333438 return paths.len() * 2 %o A333438 print([A333438(n) for n in range(2, 10)]) %Y A333438 Cf. A271507, A333439. %K A333438 nonn %O A333438 2,1 %A A333438 _Seiichi Manyama_, Mar 21 2020 %E A333438 a(11) and a(13) from _Seiichi Manyama_ %E A333438 More terms from _Ed Wynn_, Jun 29 2023