This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333445 #15 Jul 23 2025 16:01:26 %S A333445 1,2,3,6,21,6,24,231,90,10,120,3465,2160,260,15,720,65835,71280,10920, %T A333445 600,21,5040,1514205,2993760,633360,39000,1197,28,40320,40883535, %U A333445 152681760,46868640,3510000,111321,2156,36,362880,1267389585,9160905600,4218177600 %N A333445 Table T(n,k) read by upward antidiagonals. T(n,k) = Product_{i=1..n} Sum_{j=1..k} (i-1)*k+j. %C A333445 T(n,k) is the minimum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the maximum value see A333420. %H A333445 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020. %F A333445 T(n,k) = k^(2n)*Gamma(n+(1+k)/2k)/Gamma((1+k)/2k). %o A333445 (Python) %o A333445 def T(n,k): # T(n,k) for A333445 %o A333445 c, l = 1, list(range(1,k*n+1,k)) %o A333445 lt = list(l) %o A333445 for i in range(n): %o A333445 for j in range(1,k): %o A333445 lt[i] += l[i]+j %o A333445 c *= lt[i] %o A333445 return c %K A333445 nonn,tabl %O A333445 1,2 %A A333445 _Chai Wah Wu_, Mar 23 2020