cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333445 Table T(n,k) read by upward antidiagonals. T(n,k) = Product_{i=1..n} Sum_{j=1..k} (i-1)*k+j.

This page as a plain text file.
%I A333445 #15 Jul 23 2025 16:01:26
%S A333445 1,2,3,6,21,6,24,231,90,10,120,3465,2160,260,15,720,65835,71280,10920,
%T A333445 600,21,5040,1514205,2993760,633360,39000,1197,28,40320,40883535,
%U A333445 152681760,46868640,3510000,111321,2156,36,362880,1267389585,9160905600,4218177600
%N A333445 Table T(n,k) read by upward antidiagonals. T(n,k) = Product_{i=1..n} Sum_{j=1..k} (i-1)*k+j.
%C A333445 T(n,k) is the minimum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the maximum value see A333420.
%H A333445 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020.
%F A333445 T(n,k) = k^(2n)*Gamma(n+(1+k)/2k)/Gamma((1+k)/2k).
%o A333445 (Python)
%o A333445 def T(n,k): # T(n,k) for A333445
%o A333445     c, l = 1, list(range(1,k*n+1,k))
%o A333445     lt = list(l)
%o A333445     for i in range(n):
%o A333445         for j in range(1,k):
%o A333445             lt[i] += l[i]+j
%o A333445         c *= lt[i]
%o A333445     return c
%K A333445 nonn,tabl
%O A333445 1,2
%A A333445 _Chai Wah Wu_, Mar 23 2020