This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333446 #35 Jul 24 2020 06:17:17 %S A333446 1,3,2,6,14,6,10,44,126,24,15,100,630,1704,120,21,190,1950,13584, %T A333446 30360,720,28,322,4680,57264,390720,666000,5040,36,504,9576,173544, %U A333446 2251200,14032080,17302320,40320,45,744,17556,428568,8626800,110941200,603353520,518958720,362880 %N A333446 Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j. %C A333446 T(n,k) is the maximum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the minimum value see A331889. %H A333446 Seiichi Manyama, <a href="/A333446/b333446.txt">Antidiagonals n = 1..140, flattened</a> %H A333446 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020. %F A333446 T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1). %e A333446 From _Seiichi Manyama_, Jul 23 2020: (Start) %e A333446 T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44. %e A333446 Square array begins: %e A333446 1, 2, 6, 24, 120, 720, ... %e A333446 3, 14, 126, 1704, 30360, 666000, ... %e A333446 6, 44, 630, 13584, 390720, 14032080, ... %e A333446 10, 100, 1950, 57264, 2251200, 110941200, ... %e A333446 15, 190, 4680, 173544, 8626800, 538459200, ... %e A333446 21, 322, 9576, 428568, 25727520, 1940869440, ... (End) %o A333446 (Python) %o A333446 def T(n,k): # T(n,k) for A333446 %o A333446 c, l = 0, list(range(1,k*n+1,k)) %o A333446 lt = list(l) %o A333446 for i in range(n): %o A333446 for j in range(1,k): %o A333446 lt[i] *= l[i]+j %o A333446 c += lt[i] %o A333446 return c %Y A333446 Column k=1-3 give A000217, A268684, A268685(n-1). %Y A333446 Main diagonal gives A336513. %Y A333446 Cf. A323663, A331889, %K A333446 nonn,tabl %O A333446 1,2 %A A333446 _Chai Wah Wu_, Mar 23 2020