This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333447 #44 Nov 23 2023 15:59:12 %S A333447 2,12,228,62052,4180832868,18201642257939067492, %T A333447 338021701687178649306251838479209230948, %U A333447 115407456979036362321626052309736660160730393295399201179594209600531491615332 %N A333447 a(n) is the integer corresponding to a bit-string representation of the von Neumann ordinal representation of n, with largest sets listed first, and with '{' represented by the bit 1, '}' represented by the bit zero, and ignoring commas. %C A333447 Since the von Neumann ordinals begin with 0={}, it seems appropriate to have an offset of 0. %C A333447 The sequence grows super-exponentially. %C A333447 Similar to A092124, except that A092124 reverses the order of the elements in the ordinal. %C A333447 The binary expansion of a(n-1) has length 2^n and consists of n 1's followed by the leading terms of A308187. - _Andrey Zabolotskiy_, Mar 21 2020 %H A333447 Kit Scriven, <a href="/A333447/b333447.txt">Table of n, a(n) for n = 0..10</a> %H A333447 Johann von Neumann, <a href="http://acta.bibl.u-szeged.hu/13294/1/math_001_199-208.pdf">Zur Einführung der transfiniten Zahlen</a>, Acta Litterarum AC Scientiarum Ragiae Universitatis Hungaricae Francisco-Josephinae, 1 (1923), 199-208. %F A333447 a(0) = 2, a(n) = 2^(2^(n+1)-1) - 2^(2^(n)-1) + a(n-1)*(2^(2^(n)-1) + 1). %e A333447 A table demonstrating the von Neumann ordinals of the first three integers, their corresponding bit strings, and their sequence values is as follows: %e A333447 n set notation bit string a(n) %e A333447 0 {} 10 2 %e A333447 1 {{}} 1100 12 %e A333447 2 {{{}}{}} 11100100 228 %e A333447 3 {{{{}}{}}{{}}{}} 1111001001100100 62052 %t A333447 With[{nmax=8},Map[FromDigits[#,2]&,NestList["1"<>#<>StringTake[#,{2,-2}]<>"0"&,"10",nmax]]] (* _Paolo Xausa_, Nov 21 2023 *) %o A333447 (Python) %o A333447 def fBinDigit(n): %o A333447 return 2**(2**(n+1) - 1) %o A333447 def a333447(n): %o A333447 if n==0: %o A333447 return 2 %o A333447 else: %o A333447 prevAsEle = a333447(n-1) * fBinDigit(n-1) %o A333447 restOfEle = a333447(n-1) - fBinDigit(n-1) %o A333447 return fBinDigit(n)+prevAsEle+restOfEle %o A333447 (Python) %o A333447 from functools import lru_cache %o A333447 @lru_cache(maxsize=None) %o A333447 def A333447(n): return (1<<((m:=1<<n)<<1)-1)-(k:=1<<m-1)+(k+1)*A333447(n-1) if n else 2 # _Chai Wah Wu_, Nov 23 2023 %Y A333447 Cf. A079559, A092124, A308187. %K A333447 nonn,base %O A333447 0,1 %A A333447 _Kit Scriven_, Mar 21 2020