cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333463 a(n) = Sum_{k=1..n} floor(n/k) * gcd(n,k).

This page as a plain text file.
%I A333463 #29 Oct 08 2021 03:44:29
%S A333463 1,4,7,13,14,27,22,38,39,53,39,85,49,81,93,106,68,143,78,165,144,143,
%T A333463 98,243,147,176,189,252,131,338,143,281,251,243,279,440,178,278,308,
%U A333463 470,200,514,212,438,488,350,234,660,339,522,427,538,271,670,487,714,489,462,307,1028
%N A333463 a(n) = Sum_{k=1..n} floor(n/k) * gcd(n,k).
%H A333463 Chai Wah Wu, <a href="/A333463/b333463.txt">Table of n, a(n) for n = 1..10000</a>
%F A333463 a(n) = Sum_{d|n} phi(n/d) * A006218(d).
%F A333463 a(n) = Sum_{k=1..n} Sum_{d|k} gcd(n,d).
%t A333463 Table[Sum[Floor[n/k] GCD[n, k], {k, 1, n}], {n, 1, 60}]
%t A333463 Table[Sum[EulerPhi[n/d] Sum[DivisorSigma[0, k], {k, 1, d}], {d, Divisors[n]}], {n, 1, 60}]
%o A333463 (PARI) a(n) = sum(k=1, n, (n\k)*gcd(n, k)); \\ _Michel Marcus_, Mar 23 2020
%o A333463 (Python)
%o A333463 from math import isqrt
%o A333463 from sympy import divisors, totient
%o A333463 def A333463(n): return sum((2*sum(d//k for k in range(1, isqrt(d)+1))-isqrt(d)**2)*totient(n//d) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Oct 07 2021
%Y A333463 Cf. A000005, A000010, A006218, A018804, A333465.
%K A333463 nonn
%O A333463 1,2
%A A333463 _Ilya Gutkovskiy_, Mar 22 2020