This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333464 #32 Apr 07 2020 10:38:43 %S A333464 1,0,2,20,752,84008,29145982,30795358024,99417240957788 %N A333464 Number of self-avoiding walks from NW to SE corners on an n X n grid which pass through all points on the diagonal connecting NE and SW corners. %C A333464 a(11) = 29262010991555584566654. - _Seiichi Manyama_, Apr 07 2020 %e A333464 a(3) = 2; %e A333464 S--*--+ S *--+ %e A333464 | | | | %e A333464 *--+--* * + * %e A333464 | | | | %e A333464 +--*--E +--* E %e A333464 a(4) = 20; %e A333464 S--*--*--+ S--*--*--+ S--*--*--+ %e A333464 | | | %e A333464 *--*--+--* *--*--+--* *--* +--* %e A333464 | | | | | %e A333464 * +--* * +--*--* * +--* %e A333464 | | | | | | | %e A333464 +--* *--E +--* E +--*--*--E %e A333464 S--*--*--+ S--*--*--+ S--*--*--+ %e A333464 | | | %e A333464 *--+--* *--+--* *--+ * %e A333464 | | | | | %e A333464 *--+ *--* *--+ *--+ *--* %e A333464 | | | | | %e A333464 +--*--* E +--*--*--E +--*--*--E %e A333464 S--*--*--+ S--* *--+ S--* *--+ %e A333464 | | | | | | | %e A333464 +--* *--* + * *--+ * %e A333464 | | | | | %e A333464 *--+--* * +--* * *--+--*--* %e A333464 | | | | | %e A333464 +--*--*--E +--* E +--*--*--E %e A333464 S--* *--+ S *--*--+ S *--*--+ %e A333464 | | | | | | | | | %e A333464 * + * *--* +--* * *--+ * %e A333464 | | | | | | | %e A333464 *--+ * * *--+--* * +--* * %e A333464 | | | | | | | %e A333464 +--*--* E +--*--*--E +--* E %e A333464 S *--*--+ S *--*--+ S *--+ %e A333464 | | | | | | | | | %e A333464 * * +--* * * +--* *--*--+ * %e A333464 | | | | | | | %e A333464 * + * * + *--* *--+--*--* %e A333464 | | | | | | | %e A333464 +--* *--E +--* E +--*--*--E %e A333464 S *--+ S *--+ S *--+ %e A333464 | | | | | | | | | %e A333464 *--* + * * *--+ * * *--+ * %e A333464 | | | | | | | | | %e A333464 *--+ * * * +--* * * + *--* %e A333464 | | | | | | | | | %e A333464 +--*--* E +--*--* E +--* *--E %e A333464 S *--+ S *--+ %e A333464 | | | | | | %e A333464 * *--+ * * + * %e A333464 | | | | | | %e A333464 * + * * +--* * %e A333464 | | | | | | %e A333464 +--* E +--* E %o A333464 (Python) %o A333464 # Using graphillion %o A333464 from graphillion import GraphSet %o A333464 import graphillion.tutorial as tl %o A333464 def A333464(n): %o A333464 if n == 1: return 1 %o A333464 universe = tl.grid(n - 1, n - 1) %o A333464 GraphSet.set_universe(universe) %o A333464 start, goal = 1, n * n %o A333464 paths = GraphSet.paths(start, goal) %o A333464 for i in range(n): %o A333464 paths = paths.including((n - 1) * (i + 1) + 1) %o A333464 return paths.len() %o A333464 print([A333464(n) for n in range(1, 10)]) %o A333464 (Ruby) %o A333464 def search(x, y, n, used) %o A333464 return 0 if x < 0 || n <= x || y < 0 || n <= y || used[x + y * n] %o A333464 return 1 if x == n - 1 && y == n - 1 && (0..n - 1).all?{|i| used[(n - 1) * (i + 1)] == true} %o A333464 cnt = 0 %o A333464 used[x + y * n] = true %o A333464 @move.each{|mo| %o A333464 cnt += search(x + mo[0], y + mo[1], n, used) %o A333464 } %o A333464 used[x + y * n] = false %o A333464 cnt %o A333464 end %o A333464 def A(n) %o A333464 return 1 if n == 1 %o A333464 @move = [[1, 0], [-1, 0], [0, 1], [0, -1]] %o A333464 used = Array.new(n * n, false) %o A333464 search(0, 0, n, used) %o A333464 end %o A333464 def A333464(n) %o A333464 (1..n).map{|i| A(i)} %o A333464 end %o A333464 p A333464(6) %Y A333464 Cf. A007764, A333455. %K A333464 nonn,more %O A333464 1,3 %A A333464 _Seiichi Manyama_, Mar 22 2020