cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333483 Sort all positive integers, first by sum of prime indices (A056239), then by number of prime indices (A001222).

This page as a plain text file.
%I A333483 #8 May 28 2020 05:00:12
%S A333483 1,2,3,4,5,6,8,7,9,10,12,16,11,14,15,18,20,24,32,13,21,22,25,27,28,30,
%T A333483 36,40,48,64,17,26,33,35,42,44,45,50,54,56,60,72,80,96,128,19,34,39,
%U A333483 49,55,52,63,66,70,75,81,84,88,90,100,108,112,120,144,160,192,256,23,38,51,65,77,68,78,98,99,105,110,125,104,126,132,135,140,150,162,168,176,180,200,216,224,240,288,320,384,512
%N A333483 Sort all positive integers, first by sum of prime indices (A056239), then by number of prime indices (A001222).
%C A333483 A refinement of A215366, from which it first differs at a(49) = 55, A215366(49) = 52.
%C A333483 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A333483 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a>
%H A333483 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A333483 Triangle begins:
%e A333483    1
%e A333483    2
%e A333483    3   4
%e A333483    5   6   8
%e A333483    7   9  10  12  16
%e A333483   11  14  15  18  20  24  32
%e A333483   13  21  22  25  27  28  30  36  40  48  64
%e A333483   17  26  33  35  42  44  45  50  54  56  60  72  80  96 128
%t A333483 Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,0,n}]
%Y A333483 Row lengths are A000041.
%Y A333483 Ignoring length gives A215366 (graded Heinz numbers).
%Y A333483 Sorting by decreasing length gives A333484.
%Y A333483 Finally sorting lexicographically by prime indices gives A185974.
%Y A333483 Finally sorting colexicographically by prime indices gives A334433.
%Y A333483 Finally sorting reverse-lexicographically by prime indices gives A334435.
%Y A333483 Finally sorting reverse-colexicographically by prime indices gives A334438.
%Y A333483 Number of prime indices is A001222.
%Y A333483 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A333483 Partitions in (sum/length/colex) order are A036037.
%Y A333483 Sum of prime indices is A056239.
%Y A333483 Sorting reversed partitions by Heinz number gives A112798.
%Y A333483 Sorting partitions by Heinz number gives A296150.
%Y A333483 Cf. A026791, A124734, A129129, A193073, A211992, A228100, A333219, A334301, A334434, A334439, A334441, A334442.
%K A333483 nonn,tabf
%O A333483 0,2
%A A333483 _Gus Wiseman_, May 10 2020