This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333484 #6 May 10 2020 19:27:44 %S A333484 1,2,4,3,8,6,5,16,12,9,10,7,32,24,18,20,14,15,11,64,48,36,40,27,28,30, %T A333484 21,22,25,13,128,96,72,80,54,56,60,42,44,45,50,26,33,35,17,256,192, %U A333484 144,160,108,112,120,81,84,88,90,100,52,63,66,70,75,34,39,49,55,19 %N A333484 Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222). %C A333484 A refinement of A215366. %C A333484 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A333484 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A333484 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A333484 Triangle begins: %e A333484 1 %e A333484 2 %e A333484 4 3 %e A333484 8 6 5 %e A333484 16 12 9 10 7 %e A333484 32 24 18 20 14 15 11 %e A333484 64 48 36 40 27 28 30 21 22 25 13 %e A333484 128 96 72 80 54 56 60 42 44 45 50 26 33 35 17 %t A333484 Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,n,0,-1}] %Y A333484 Row lengths are A000041. %Y A333484 Ignoring length gives A215366 (graded Heinz numbers). %Y A333484 Sorting by increasing length gives A333483. %Y A333484 Number of prime indices is A001222. %Y A333484 Lexicographically ordered reversed partitions are A026791. %Y A333484 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A333484 Partitions in (sum/length/colex) order are A036037. %Y A333484 Sum of prime indices is A056239. %Y A333484 Reverse-lexicographically ordered partitions are A080577. %Y A333484 Sorting reversed partitions by Heinz number gives A112798. %Y A333484 Lexicographically ordered partitions are A193073. %Y A333484 Sorting partitions by Heinz number gives A296150. %Y A333484 Cf. A124734, A129129, A211992, A228100, A333219, A334301, A334433, A334434, A334439, A334441, A334442. %K A333484 nonn,tabf %O A333484 0,2 %A A333484 _Gus Wiseman_, May 10 2020