cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333484 Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222).

This page as a plain text file.
%I A333484 #6 May 10 2020 19:27:44
%S A333484 1,2,4,3,8,6,5,16,12,9,10,7,32,24,18,20,14,15,11,64,48,36,40,27,28,30,
%T A333484 21,22,25,13,128,96,72,80,54,56,60,42,44,45,50,26,33,35,17,256,192,
%U A333484 144,160,108,112,120,81,84,88,90,100,52,63,66,70,75,34,39,49,55,19
%N A333484 Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222).
%C A333484 A refinement of A215366.
%C A333484 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A333484 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a>
%H A333484 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A333484 Triangle begins:
%e A333484     1
%e A333484     2
%e A333484     4   3
%e A333484     8   6   5
%e A333484    16  12   9  10   7
%e A333484    32  24  18  20  14  15  11
%e A333484    64  48  36  40  27  28  30  21  22  25  13
%e A333484   128  96  72  80  54  56  60  42  44  45  50  26  33  35  17
%t A333484 Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,n,0,-1}]
%Y A333484 Row lengths are A000041.
%Y A333484 Ignoring length gives A215366 (graded Heinz numbers).
%Y A333484 Sorting by increasing length gives A333483.
%Y A333484 Number of prime indices is A001222.
%Y A333484 Lexicographically ordered reversed partitions are A026791.
%Y A333484 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A333484 Partitions in (sum/length/colex) order are A036037.
%Y A333484 Sum of prime indices is A056239.
%Y A333484 Reverse-lexicographically ordered partitions are A080577.
%Y A333484 Sorting reversed partitions by Heinz number gives A112798.
%Y A333484 Lexicographically ordered partitions are A193073.
%Y A333484 Sorting partitions by Heinz number gives A296150.
%Y A333484 Cf. A124734, A129129, A211992, A228100, A333219, A334301, A334433, A334434, A334439, A334441, A334442.
%K A333484 nonn,tabf
%O A333484 0,2
%A A333484 _Gus Wiseman_, May 10 2020