cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100.

This page as a plain text file.
%I A333485 #20 Feb 09 2021 18:34:45
%S A333485 1,2,4,3,8,6,5,16,12,9,10,7,32,24,18,20,15,14,11,64,48,36,40,27,30,28,
%T A333485 25,21,22,13,128,96,72,80,54,60,56,45,50,42,44,35,33,26,17,256,192,
%U A333485 144,160,108,120,112,81,90,100,84,88,75,63,70,66,52,49,55,39,34,19
%N A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100.
%C A333485 A permutation of the positive integers.
%C A333485 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.
%C A333485 As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.
%H A333485 Michael De Vlieger, <a href="/A333485/b333485.txt">Table of n, a(n) for n = 0..9295</a> (rows 0 <= n <= 25, flattened)
%H A333485 Michael De Vlieger, <a href="/A333485/a333485.png">log-log plot of rows 0 <= n <= 30 of this sequence</a>, highlighting 2^n in red and prime(n) in blue.
%H A333485 T. I. Fenner, G. Loizou: A binary tree representation and related algorithms for generating integer partitions. The Computer J. 23(4), 332-337 (1980)
%H A333485 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a>
%H A333485 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%F A333485 A001221(a(n)) = A115623(n).
%F A333485 A001222(a(n - 1)) = A331581(n).
%F A333485 A061395(a(n > 1)) = A128628(n).
%e A333485 The sequence of terms together with their prime indices begins:
%e A333485     1: {}              11: {5}                 56: {1,1,1,4}
%e A333485     2: {1}             64: {1,1,1,1,1,1}       45: {2,2,3}
%e A333485     4: {1,1}           48: {1,1,1,1,2}         50: {1,3,3}
%e A333485     3: {2}             36: {1,1,2,2}           42: {1,2,4}
%e A333485     8: {1,1,1}         40: {1,1,1,3}           44: {1,1,5}
%e A333485     6: {1,2}           27: {2,2,2}             35: {3,4}
%e A333485     5: {3}             30: {1,2,3}             33: {2,5}
%e A333485    16: {1,1,1,1}       28: {1,1,4}             26: {1,6}
%e A333485    12: {1,1,2}         25: {3,3}               17: {7}
%e A333485     9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
%e A333485    10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
%e A333485     7: {4}             13: {6}                144: {1,1,1,1,2,2}
%e A333485    32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    160: {1,1,1,1,1,3}
%e A333485    24: {1,1,1,2}       96: {1,1,1,1,1,2}      108: {1,1,2,2,2}
%e A333485    18: {1,2,2}         72: {1,1,1,2,2}        120: {1,1,1,2,3}
%e A333485    20: {1,1,3}         80: {1,1,1,1,3}        112: {1,1,1,1,4}
%e A333485    15: {2,3}           54: {1,2,2,2}           81: {2,2,2,2}
%e A333485    14: {1,4}           60: {1,1,2,3}           90: {1,2,2,3}
%e A333485 The triangle begins:
%e A333485     1
%e A333485     2
%e A333485     4   3
%e A333485     8   6   5
%e A333485    16  12   9  10   7
%e A333485    32  24  18  20  15  14  11
%e A333485    64  48  36  40  27  30  28  25  21  22  13
%e A333485   128  96  72  80  54  60  56  45  50  42  44  35  33  26  17
%t A333485 ralensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]>Length[c],OrderedQ[{f,c}]];
%t A333485 Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],ralensort],{n,0,8}]
%Y A333485 Row lengths are A000041.
%Y A333485 The constructive version is A228100.
%Y A333485 Sorting by increasing length gives A334433.
%Y A333485 The version with rows reversed is A334438.
%Y A333485 Sum of prime indices is A056239.
%Y A333485 Reverse-lexicographically ordered partitions are A080577.
%Y A333485 Sorting reversed partitions by Heinz number gives A112798.
%Y A333485 Lexicographically ordered partitions are A193073.
%Y A333485 Graded Heinz numbers are A215366.
%Y A333485 Sorting partitions by Heinz number gives A296150.
%Y A333485 If the fine ordering is by Heinz number instead of lexicographic we get A333484.
%Y A333485 Cf. A000041, A026791, A036036, A036037, A036043, A185974, A211992, A228351, A296773, A333483, A334301, A334439.
%K A333485 nonn,look,tabf
%O A333485 0,2
%A A333485 _Gus Wiseman_, May 11 2020
%E A333485 Name extended by _Peter Luschny_, Dec 23 2020