This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333485 #20 Feb 09 2021 18:34:45 %S A333485 1,2,4,3,8,6,5,16,12,9,10,7,32,24,18,20,15,14,11,64,48,36,40,27,30,28, %T A333485 25,21,22,13,128,96,72,80,54,60,56,45,50,42,44,35,33,26,17,256,192, %U A333485 144,160,108,120,112,81,90,100,84,88,75,63,70,66,52,49,55,39,34,19 %N A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100. %C A333485 A permutation of the positive integers. %C A333485 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions. %C A333485 As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0. %H A333485 Michael De Vlieger, <a href="/A333485/b333485.txt">Table of n, a(n) for n = 0..9295</a> (rows 0 <= n <= 25, flattened) %H A333485 Michael De Vlieger, <a href="/A333485/a333485.png">log-log plot of rows 0 <= n <= 30 of this sequence</a>, highlighting 2^n in red and prime(n) in blue. %H A333485 T. I. Fenner, G. Loizou: A binary tree representation and related algorithms for generating integer partitions. The Computer J. 23(4), 332-337 (1980) %H A333485 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A333485 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A333485 A001221(a(n)) = A115623(n). %F A333485 A001222(a(n - 1)) = A331581(n). %F A333485 A061395(a(n > 1)) = A128628(n). %e A333485 The sequence of terms together with their prime indices begins: %e A333485 1: {} 11: {5} 56: {1,1,1,4} %e A333485 2: {1} 64: {1,1,1,1,1,1} 45: {2,2,3} %e A333485 4: {1,1} 48: {1,1,1,1,2} 50: {1,3,3} %e A333485 3: {2} 36: {1,1,2,2} 42: {1,2,4} %e A333485 8: {1,1,1} 40: {1,1,1,3} 44: {1,1,5} %e A333485 6: {1,2} 27: {2,2,2} 35: {3,4} %e A333485 5: {3} 30: {1,2,3} 33: {2,5} %e A333485 16: {1,1,1,1} 28: {1,1,4} 26: {1,6} %e A333485 12: {1,1,2} 25: {3,3} 17: {7} %e A333485 9: {2,2} 21: {2,4} 256: {1,1,1,1,1,1,1,1} %e A333485 10: {1,3} 22: {1,5} 192: {1,1,1,1,1,1,2} %e A333485 7: {4} 13: {6} 144: {1,1,1,1,2,2} %e A333485 32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 160: {1,1,1,1,1,3} %e A333485 24: {1,1,1,2} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} %e A333485 18: {1,2,2} 72: {1,1,1,2,2} 120: {1,1,1,2,3} %e A333485 20: {1,1,3} 80: {1,1,1,1,3} 112: {1,1,1,1,4} %e A333485 15: {2,3} 54: {1,2,2,2} 81: {2,2,2,2} %e A333485 14: {1,4} 60: {1,1,2,3} 90: {1,2,2,3} %e A333485 The triangle begins: %e A333485 1 %e A333485 2 %e A333485 4 3 %e A333485 8 6 5 %e A333485 16 12 9 10 7 %e A333485 32 24 18 20 15 14 11 %e A333485 64 48 36 40 27 30 28 25 21 22 13 %e A333485 128 96 72 80 54 60 56 45 50 42 44 35 33 26 17 %t A333485 ralensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]>Length[c],OrderedQ[{f,c}]]; %t A333485 Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],ralensort],{n,0,8}] %Y A333485 Row lengths are A000041. %Y A333485 The constructive version is A228100. %Y A333485 Sorting by increasing length gives A334433. %Y A333485 The version with rows reversed is A334438. %Y A333485 Sum of prime indices is A056239. %Y A333485 Reverse-lexicographically ordered partitions are A080577. %Y A333485 Sorting reversed partitions by Heinz number gives A112798. %Y A333485 Lexicographically ordered partitions are A193073. %Y A333485 Graded Heinz numbers are A215366. %Y A333485 Sorting partitions by Heinz number gives A296150. %Y A333485 If the fine ordering is by Heinz number instead of lexicographic we get A333484. %Y A333485 Cf. A000041, A026791, A036036, A036037, A036043, A185974, A211992, A228351, A296773, A333483, A334301, A334439. %K A333485 nonn,look,tabf %O A333485 0,2 %A A333485 _Gus Wiseman_, May 11 2020 %E A333485 Name extended by _Peter Luschny_, Dec 23 2020