This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333492 #9 Mar 29 2020 05:19:40 %S A333492 1,2,4,8,16,6,64,128,256,18,1024,12,4096,66,20,32768,65536,258,262144, %T A333492 24,68,1026,4194304,132,16777216,4098,67108864,72,268435456,22, %U A333492 1073741824,2147483648,1028,65538,80,264,68719476736,262146,4100,144,1099511627776,70,4398046511104 %N A333492 Position of first appearance of n in A271410 (LCM of binary indices). %C A333492 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A333492 Giovanni Resta, <a href="/A333492/b333492.txt">Table of n, a(n) for n = 1..1000</a> %e A333492 The sequence together with the corresponding binary expansions and binary indices begins: %e A333492 1: 1 ~ {1} %e A333492 2: 10 ~ {2} %e A333492 4: 100 ~ {3} %e A333492 8: 1000 ~ {4} %e A333492 16: 10000 ~ {5} %e A333492 6: 110 ~ {2,3} %e A333492 64: 1000000 ~ {7} %e A333492 128: 10000000 ~ {8} %e A333492 256: 100000000 ~ {9} %e A333492 18: 10010 ~ {2,5} %e A333492 1024: 10000000000 ~ {11} %e A333492 12: 1100 ~ {3,4} %e A333492 4096: 1000000000000 ~ {13} %e A333492 66: 1000010 ~ {2,7} %e A333492 20: 10100 ~ {3,5} %e A333492 32768: 1000000000000000 ~ {16} %e A333492 65536: 10000000000000000 ~ {17} %e A333492 258: 100000010 ~ {2,9} %t A333492 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A333492 q=Table[LCM@@bpe[n],{n,10000}]; %t A333492 Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}] %Y A333492 The version for prime indices is A330225. %Y A333492 The version for standard compositions is A333225. %Y A333492 Let q(k) be the binary indices of k: %Y A333492 - The sum of q(k) is A029931(k). %Y A333492 - The elements of q(k) are row k of A048793. %Y A333492 - The product of q(k) is A096111(k). %Y A333492 - The LCM of q(k) is A271410(k). %Y A333492 - The GCD of q(k) is A326674(k). %Y A333492 GCD of prime indices is A289508. %Y A333492 LCM of prime indices is A290103. %Y A333492 LCM of standard compositions is A333226. %Y A333492 Cf. A000120, A066099, A070939, A074761, A076078, A124767, A285572, A324837, A328219, A328451, A331579, A333227. %K A333492 nonn %O A333492 1,2 %A A333492 _Gus Wiseman_, Mar 28 2020 %E A333492 Terms a(23) and beyond from _Giovanni Resta_, Mar 29 2020