This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333497 #41 Jul 15 2020 07:30:19 %S A333497 1,1,1,1,2,4,8,18,48,144,456,1560,5808,23184,98160,440832,2101824, %T A333497 10588608,56104128,312013440,1818498816,11082682368,70467474816, %U A333497 466680045312,3214497245184,22994283345408,170573216656896,1310482565462016,10415453732637696 %N A333497 a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k) * a(n-k-3). %C A333497 Shifts 3 places left when e.g.f. is squared. %H A333497 Georg Fischer, <a href="/A333497/b333497.txt">Table of n, a(n) for n = 0..500</a> %F A333497 E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/2 + Integral( Integral( Integral A(x)^2 dx) dx) dx. %t A333497 a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 28}] %t A333497 nmax = 28; A[_] = 0; Do[A[x_] = 1 + x + x^2/2 + Integrate[Integrate[Integrate[A[x]^2, x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]! %Y A333497 Cf. A000142, A007558, A307970, A336009, A336010. %K A333497 nonn %O A333497 0,5 %A A333497 _Ilya Gutkovskiy_, Jul 04 2020