This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333510 #29 Mar 26 2020 07:12:05 %S A333510 1,8,29,80,195,444,969,2056,4279,8788,17885,36176,72875,146412,293649, %T A333510 588312,1177855,2357188,4716133,9434336,18871091,37744988,75493209, %U A333510 150990120,301984455,603973684,1207952749,2415911536,4831829819,9663667148,19327342625,38654694456,77309399055,154618809252 %N A333510 Number of self-avoiding walks in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side. %F A333510 Conjecture: a(n) = (27*2^n - n^3 - 26*n - 24)/3. %F A333510 Conjecture: G.f.: x*(1+2*x-5*x^2+2*x^3+2*x^4)/((1-x)^4*(1-2*x)). %e A333510 a(1) = 1; %e A333510 +--+ %e A333510 a(2) = 8; %e A333510 +--+ + + +--* + * %e A333510 | | | | %e A333510 * * *--* * + *--+ %e A333510 ------------------------- %e A333510 *--+ * + *--* * * %e A333510 | | | | %e A333510 + * +--* + + +--+ %e A333510 a(3) = 29; %e A333510 +--+ + + + + +--* + * %e A333510 | | | | | | %e A333510 * * *--* * * * + *--+ %e A333510 | | %e A333510 * * * * *--* * * * * %e A333510 -------------------------------- %e A333510 + * +--* +--* + * + * %e A333510 | | | | | %e A333510 * + *--* * * *--* * * %e A333510 | | | | | | %e A333510 *--* *--+ * + * + *--+ %e A333510 -------------------------------- %e A333510 *--+ * + * + *--* * * %e A333510 | | | | | %e A333510 + * +--* + * + + +--+ %e A333510 | | %e A333510 * * * * *--+ * * * * %e A333510 -------------------------------- %e A333510 * * *--* * * * * *--+ %e A333510 | | | %e A333510 + + + * +--* + * *--* %e A333510 | | | | | | %e A333510 *--* * + * + *--+ +--* %e A333510 -------------------------------- %e A333510 *--+ * + * + *--* * * %e A333510 | | | | | %e A333510 * * *--* * * * + *--+ %e A333510 | | | | | %e A333510 + * + * +--* + * + * %e A333510 -------------------------------- %e A333510 * * *--* * * * * %e A333510 | | %e A333510 * + * * *--* * * %e A333510 | | | | | %e A333510 +--* + + + + +--+ %o A333510 (Python) %o A333510 # Using graphillion %o A333510 from graphillion import GraphSet %o A333510 import graphillion.tutorial as tl %o A333510 def A(start, goal, n, k): %o A333510 universe = tl.grid(n - 1, k - 1) %o A333510 GraphSet.set_universe(universe) %o A333510 paths = GraphSet.paths(start, goal) %o A333510 return paths.len() %o A333510 def A333509(n, k): %o A333510 if n == 1: return 1 %o A333510 s = 0 %o A333510 for i in range(1, n + 1): %o A333510 for j in range(k * n - n + 1, k * n + 1): %o A333510 s += A(i, j, k, n) %o A333510 return s %o A333510 def A333510(n): %o A333510 return A333509(n, 2) %o A333510 print([A333510(n) for n in range(1, 20)]) %Y A333510 Column k=2 of A333509. %K A333510 nonn %O A333510 1,2 %A A333510 _Seiichi Manyama_, Mar 25 2020