This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333513 #27 Nov 28 2022 10:21:59 %S A333513 1,1,1,1,1,1,1,3,3,1,1,7,11,7,1,1,17,49,49,17,1,1,41,229,373,229,41,1, %T A333513 1,99,1081,3105,3105,1081,99,1,1,239,5123,26515,44930,26515,5123,239, %U A333513 1,1,577,24323,227441,674292,674292,227441,24323,577,1 %N A333513 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding closed paths on an n X k grid which pass through four corners ((0,0), (0,k-1), (n-1,k-1), (n-1,0)). %H A333513 Seiichi Manyama, <a href="/A333513/b333513.txt">Antidiagonals n = 2..15, flattened</a> %F A333513 T(n,k) = T(k,n). %e A333513 Square array T(n,k) begins: %e A333513 1, 1, 1, 1, 1, 1, ... %e A333513 1, 1, 3, 7, 17, 41, ... %e A333513 1, 3, 11, 49, 229, 1081, ... %e A333513 1, 7, 49, 373, 3105, 26515, ... %e A333513 1, 17, 229, 3105, 44930, 674292, ... %e A333513 1, 41, 1081, 26515, 674292, 17720400, ... %o A333513 (Python) %o A333513 # Using graphillion %o A333513 from graphillion import GraphSet %o A333513 import graphillion.tutorial as tl %o A333513 def A333513(n, k): %o A333513 universe = tl.grid(n - 1, k - 1) %o A333513 GraphSet.set_universe(universe) %o A333513 cycles = GraphSet.cycles() %o A333513 for i in [1, k, k * (n - 1) + 1, k * n]: %o A333513 cycles = cycles.including(i) %o A333513 return cycles.len() %o A333513 print([A333513(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)]) %Y A333513 Column k=2-7 give: A000012, A001333(n-2), A333514, A333515, A358712, A358713. %Y A333513 Main diagonal gives A333466. %Y A333513 Cf. A333758. %K A333513 nonn,tabl %O A333513 2,8 %A A333513 _Seiichi Manyama_, Mar 25 2020