This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333514 #46 Mar 28 2020 05:19:33 %S A333514 1,3,11,49,229,1081,5123,24323,115567,549253,2610697,12409597, %T A333514 58988239,280398495,1332867179,6335755801,30116890013,143160058769, %U A333514 680508623307,3234784886251,15376488953815,73091850448509,347440733910081,1651552982759797,7850625988903223 %N A333514 Number of self-avoiding closed paths on an n X 4 grid which pass through four corners ((0,0), (0,3), (n-1,3), (n-1,0)). %C A333514 Also number of self-avoiding closed paths on a 4 X n grid which pass through four corners ((0,0), (0,n-1), (3,n-1), (3,0)). %H A333514 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-12,7,-3,-2). %F A333514 G.f.: x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5). %F A333514 a(n) = 7*a(n-1) - 12*a(n-2) + 7*a(n-3) - 3*a(n-4) - 2*a(n-5) for n > 6. %e A333514 a(2) = 1; %e A333514 +--*--*--+ %e A333514 | | %e A333514 +--*--*--+ %e A333514 a(3) = 3; %e A333514 +--*--*--+ +--*--*--+ +--* *--+ %e A333514 | | | | | | | | %e A333514 * *--* * * * * *--* * %e A333514 | | | | | | | | %e A333514 +--* *--+ +--*--*--+ +--*--*--+ %e A333514 a(4) = 11; %e A333514 +--*--*--+ +--*--*--+ +--*--*--+ %e A333514 | | | | | | %e A333514 *--*--* * *--* *--* *--* * %e A333514 | | | | | | %e A333514 *--*--* * *--* *--* *--* * %e A333514 | | | | | | %e A333514 +--*--*--+ +--*--*--+ +--*--*--+ %e A333514 +--*--*--+ +--*--*--+ +--*--*--+ %e A333514 | | | | | | %e A333514 * *--*--* * *--* * * *--* %e A333514 | | | | | | | | %e A333514 * *--*--* * * * * * *--* %e A333514 | | | | | | | | %e A333514 +--*--*--+ +--* *--+ +--*--*--+ %e A333514 +--*--*--+ +--*--*--+ +--* *--+ %e A333514 | | | | | | | | %e A333514 * * * * * *--* * %e A333514 | | | | | | %e A333514 * *--* * * * * *--* * %e A333514 | | | | | | | | | | %e A333514 +--* *--+ +--*--*--+ +--* *--+ %e A333514 +--* *--+ +--* *--+ %e A333514 | | | | | | | | %e A333514 * *--* * * * * * %e A333514 | | | | | | %e A333514 * * * *--* * %e A333514 | | | | %e A333514 +--*--*--+ +--*--*--+ %o A333514 (PARI) N=40; x='x+O('x^N); Vec(x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5)) %o A333514 (Python) %o A333514 # Using graphillion %o A333514 from graphillion import GraphSet %o A333514 import graphillion.tutorial as tl %o A333514 def A333513(n, k): %o A333514 universe = tl.grid(n - 1, k - 1) %o A333514 GraphSet.set_universe(universe) %o A333514 cycles = GraphSet.cycles() %o A333514 for i in [1, k, k * (n - 1) + 1, k * n]: %o A333514 cycles = cycles.including(i) %o A333514 return cycles.len() %o A333514 def A333514(n): %o A333514 return A333513(4, n) %o A333514 print([A333514(n) for n in range(2, 15)]) %Y A333514 Column k=4 of A333513. %K A333514 nonn %O A333514 2,2 %A A333514 _Seiichi Manyama_, Mar 25 2020