This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333515 #30 Jan 18 2024 02:32:13 %S A333515 1,7,49,373,3105,26515,227441,1953099,16782957,144262743,1240194297, %T A333515 10662034451,91663230249,788046822891,6775004473757,58246174168047, %U A333515 500755017859261,4305100014182879,37011883913816129,318199242452585915,2735628331213604009,23518793814422304163 %N A333515 Number of self-avoiding closed paths on an n X 5 grid which pass through four corners ((0,0), (0,4), (n-1,4), (n-1,0)). %C A333515 Also number of self-avoiding closed paths on a 5 X n grid which pass through four corners ((0,0), (0,n-1), (4,n-1), (4,0)). %H A333515 Seiichi Manyama, <a href="/A333515/b333515.txt">Table of n, a(n) for n = 2..1000</a> %F A333515 Conjectures from _Chai Wah Wu_, Jan 17 2024: (Start) %F A333515 a(n) = 13*a(n-1) - 45*a(n-2) + 66*a(n-3) - 17*a(n-4) - 209*a(n-5) + 151*a(n-6) + 140*a(n-7) - 112*a(n-8) - 48*a(n-9) + 50*a(n-10) + 28*a(n-11) for n > 12. %F A333515 G.f.: x^2*(4*x^7 + 2*x^6 - 29*x^5 - 16*x^4 + 15*x^3 - 3*x^2 + 6*x - 1)/(28*x^11 + 50*x^10 - 48*x^9 - 112*x^8 + 140*x^7 + 151*x^6 - 209*x^5 - 17*x^4 + 66*x^3 - 45*x^2 + 13*x - 1). (End) %e A333515 a(2) = 1; %e A333515 +--*--*--*--+ %e A333515 | | %e A333515 +--*--*--*--+ %e A333515 a(3) = 7; %e A333515 +--*--*--*--+ +--*--*--*--+ +--*--*--*--+ %e A333515 | | | | | | %e A333515 * *--* * * *--*--* * * *--* * %e A333515 | | | | | | | | | | | | %e A333515 +--*--* *--+ +--* *--+ +--* *--*--+ %e A333515 +--*--*--*--+ +--*--* *--+ +--* *--*--+ %e A333515 | | | | | | | | | | %e A333515 * * * *--* * * *--* * %e A333515 | | | | | | %e A333515 +--*--*--*--+ +--*--*--*--+ +--*--*--*--+ %e A333515 +--* *--+ %e A333515 | | | | %e A333515 * *--*--* * %e A333515 | | %e A333515 +--*--*--*--+ %o A333515 (Python) %o A333515 # Using graphillion %o A333515 from graphillion import GraphSet %o A333515 import graphillion.tutorial as tl %o A333515 def A333513(n, k): %o A333515 universe = tl.grid(n - 1, k - 1) %o A333515 GraphSet.set_universe(universe) %o A333515 cycles = GraphSet.cycles() %o A333515 for i in [1, k, k * (n - 1) + 1, k * n]: %o A333515 cycles = cycles.including(i) %o A333515 return cycles.len() %o A333515 def A333515(n): %o A333515 return A333513(n, 5) %o A333515 print([A333515(n) for n in range(2, 25)]) %Y A333515 Column k=5 of A333513. %K A333515 nonn %O A333515 2,2 %A A333515 _Seiichi Manyama_, Mar 25 2020