cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333518 a(n) = A000720(A006530(A334468(n))).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 2, 2, 3, 1, 2, 3, 3, 2, 2, 3, 4, 1, 4, 2, 3, 3, 2, 3, 2, 3, 4, 2, 3, 3, 1, 3, 4, 2, 3, 3, 2, 4, 4, 3, 4, 2, 3, 4, 2, 4, 3, 6, 3, 2, 3, 1, 3, 4, 2, 4, 3, 5, 6, 4, 3, 2, 4, 4, 4, 3, 7, 3, 4, 2, 4, 3, 3, 6, 4, 6, 2, 4, 4, 3, 5, 6, 8, 7, 3, 2, 5, 3, 4, 1, 4, 5, 3, 5, 4, 4, 2, 4, 5, 3, 5, 6, 3, 4
Offset: 1

Views

Author

Michael De Vlieger, May 05 2020

Keywords

Comments

Indices of the greatest prime factor of A334468(n).
Consider A334468, a list of numbers m = n+j such that j > 0 is also the smallest number such that n+j has no prime factor > j for some n and j = A217287(n).
Since prime q always contributes a novel prime divisor (i.e., q itself) to the set of distinct primes that divide at least 1 number i the range n + i (1 <= i <= j), the numbers m in A334468 are composite, and given the above, m is a product of relatively small prime factors.

Examples

			Start with n = 1, the empty product. Incrementing n and storing the distinct prime factors each time, we encounter 2, which does not divide any previous number n. Therefore we proceed to n = 3, which is prime and its distinct prime divisor again does not divide any previous number. Finally, at 4, we have the distinct prime divisor 2, since 2 divides the product of the previous range {1, 2, 3}, we end the chain. Therefore 4 is the first term of this sequence.
We list row n of A217438 below, starting with n aligned in columns:
1  2  3
   2  3
      3  4  5
         4  5  6  7
            5  6  7
               6  7
                  7  8  9  10  11
                     8  9  10  11
                        9  10  11
                           10  11  12  13  14
                               11  12  13  14  15
                                   12  13  14  15
                                       13  14  15
                                           14  15
                                               ...
Adding 1 to the last numbers seen in all the rows, we generate the sequence A334468: {4, 6, 8, 12, 15, 16, ...}. Of these, we have greatest prime factors {2, 3, 2, 3, 5, 2, ...} with indices {1, 2, 1, 2, 3, 1, ...}.
Least indices of prime(k) in a(n):
   i  p(i)    n    a(n)
  ---------------------
   1    2     1      4
   2    3     2      6
   3    5     5     15
   4    7    18     63
   5   11    59    308
   6   13    49    234
   7   17    68    374
   8   19    84    475
   9   23   292   2392
  10   29   401   3625
  11   31   518   4991
  12   37   791   8547
  ...
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 2^10, r}, r = Array[If[# == 1, 0, Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn]; Map[PrimePi@ FactorInteger[#][[-1, 1]] &, #] &@ Union@ Array[Block[{k = # + 1, s = r[[#]]}, While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k] &, nn - Ceiling@ Sqrt@ nn] ]