This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333520 #58 Apr 01 2020 03:21:58 %S A333520 1,2,6,4,2,20,36,48,48,32,70,224,510,956,1586,2224,2106,732,104,252, %T A333520 1200,3904,10560,25828,58712,121868,217436,300380,280776,170384,61336, %U A333520 10180,924,5940,25186,88084,277706,821480,2309402,6140040,15130410,33339900,62692432,96096244,116826664,110195700,78154858,39287872,12396758,1879252,111712 %N A333520 Triangle read by rows: T(n,k) is the number of self-avoiding paths of length 2*(n-1+k) connecting opposite corners in the n X n grid graph (0 <= k <= floor((n-1)^2/2), n >= 1). %H A333520 Seiichi Manyama, <a href="/A333520/b333520.txt">Rows n = 1..9, flattened</a> %e A333520 T(3,1) = 4; %e A333520 S--* S--*--* S *--* S %e A333520 | | | | | | %e A333520 *--* *--* *--* * * *--* %e A333520 | | | | | | %e A333520 *--*--E *--E E *--* E %e A333520 Triangle starts: %e A333520 ======================================================= %e A333520 n\k| 0 1 2 3 4 ... 8 ... 12 %e A333520 ---|--------------------------------------------------- %e A333520 1 | 1; %e A333520 2 | 2; %e A333520 3 | 6, 4, 2; %e A333520 4 | 20, 36, 48, 48, 32; %e A333520 5 | 70, 224, 510, 956, 1586, ... , 104; %e A333520 6 | 252, 1200, 3904, 10560, ................. , 10180; %o A333520 (Python) %o A333520 # Using graphillion %o A333520 from graphillion import GraphSet %o A333520 import graphillion.tutorial as tl %o A333520 def A333520(n): %o A333520 if n == 1: return [1] %o A333520 universe = tl.grid(n - 1, n - 1) %o A333520 GraphSet.set_universe(universe) %o A333520 start, goal = 1, n * n %o A333520 paths = GraphSet.paths(start, goal) %o A333520 return [paths.len(2 * (n - 1 + k)).len() for k in range((n - 1) ** 2 // 2 + 1)] %o A333520 print([i for n in range(1, 8) for i in A333520(n)]) %Y A333520 Row sums give A007764. %Y A333520 T(n,0) gives A000984(n-1). %Y A333520 T(n,1) gives A257888(n). %Y A333520 T(n,floor((n-1)^2/2)) gives A121788(n-1). %Y A333520 T(2*n-1,2*(n-1)^2) gives A001184(n-1). %Y A333520 Cf. A074148, A302337, A329633. %K A333520 nonn,tabf %O A333520 1,2 %A A333520 _Seiichi Manyama_, Mar 29 2020