This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333530 #20 Apr 25 2021 13:11:58 %S A333530 2,5,9,3,6,14,5,9,20,27,10,35,4,6,13,21,44,8,26,54,14,20,65,17,24,77, %T A333530 9,44,90,5,11,14,18,33,51,104,21,38,119,135,12,22,49,75,152,14,25,55, %U A333530 84,170,35,45,189,6,11,26,39,50,68,209,9,15,29,35,75,114,230,17,252 %N A333530 Make a list of triples [n,k,m] with n>=1, k>=1, and T_n+T_k = T_m as in A309507, arranged in lexicographic order; sequence gives values of k. %H A333530 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020. %e A333530 The first few triples are: %e A333530 2, 2, 3 %e A333530 3, 5, 6 %e A333530 4, 9, 10 %e A333530 5, 3, 6 %e A333530 5, 6, 8 %e A333530 5, 14, 15 %e A333530 6, 5, 8 %e A333530 6, 9, 11 %e A333530 6, 20, 21 %e A333530 7, 27, 28 %e A333530 8, 10, 13 %e A333530 8, 35, 36 %e A333530 9, 4, 10 %e A333530 9, 6, 11 %e A333530 9, 13, 16 %e A333530 9, 21, 23 %e A333530 9, 44, 45 %e A333530 10, 8, 13 %e A333530 10, 26, 28 %e A333530 10, 54, 55 %e A333530 11, 14, 18 %e A333530 11, 20, 23 %e A333530 11, 65, 66 %e A333530 12, 17, 21 %e A333530 12, 24, 27 %e A333530 12, 77, 78 %e A333530 ... %p A333530 # This program produces the triples for each value of n, but then they need to be sorted on k: %p A333530 with(numtheory): %p A333530 A:=[]; M:=100; %p A333530 for n from 1 to M do %p A333530 TT:=n*(n+1); %p A333530 dlis:=divisors(TT); %p A333530 for d in dlis do %p A333530 if (d mod 2) = 1 then e := TT/d; %p A333530 mi:=min(d,e); ma:=max(d,e); %p A333530 k:=(ma-mi-1)/2; %p A333530 m:=(ma+mi-1)/2; %p A333530 # skip if k=0 %p A333530 if k>0 then %p A333530 lprint(n,k,m); %p A333530 fi; %p A333530 fi; %p A333530 od: %p A333530 od: %Y A333530 Cf. A000217, A309507, A333529, A333531. %Y A333530 If we only take triples [n,k,m] with n <= k <= m, the values of k and m are A198455 and A198456 respectively. %K A333530 nonn %O A333530 1,1 %A A333530 _N. J. A. Sloane_, Apr 01 2020