This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333531 #13 Apr 25 2021 13:12:18 %S A333531 3,6,10,6,8,15,8,11,21,28,13,36,10,11,16,23,45,13,28,55,18,23,66,21, %T A333531 27,78,16,46,91,15,18,20,23,36,53,105,26,41,120,136,21,28,52,77,153, %U A333531 23,31,58,86,171,40,49,190,21,23,33,44,54,71,210,23,26,36,41,78,116,231,28,253 %N A333531 Make a list of triples [n,k,m] with n>=1, k>=1, and T_n+T_k = T_m as in A309507, arranged in lexicographic order; sequence gives values of m. %H A333531 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020. %e A333531 The first few triples are: %e A333531 2, 2, 3 %e A333531 3, 5, 6 %e A333531 4, 9, 10 %e A333531 5, 3, 6 %e A333531 5, 6, 8 %e A333531 5, 14, 15 %e A333531 6, 5, 8 %e A333531 6, 9, 11 %e A333531 6, 20, 21 %e A333531 7, 27, 28 %e A333531 8, 10, 13 %e A333531 8, 35, 36 %e A333531 9, 4, 10 %e A333531 9, 6, 11 %e A333531 9, 13, 16 %e A333531 9, 21, 23 %e A333531 9, 44, 45 %e A333531 10, 8, 13 %e A333531 10, 26, 28 %e A333531 10, 54, 55 %e A333531 11, 14, 18 %e A333531 11, 20, 23 %e A333531 11, 65, 66 %e A333531 12, 17, 21 %e A333531 12, 24, 27 %e A333531 12, 77, 78 %e A333531 ... %p A333531 # This program produces the triples for each value of n, but then they need to be sorted on k: %p A333531 with(numtheory): %p A333531 A:=[]; M:=100; %p A333531 for n from 1 to M do %p A333531 TT:=n*(n+1); %p A333531 dlis:=divisors(TT); %p A333531 for d in dlis do %p A333531 if (d mod 2) = 1 then e := TT/d; %p A333531 mi:=min(d,e); ma:=max(d,e); %p A333531 k:=(ma-mi-1)/2; %p A333531 m:=(ma+mi-1)/2; %p A333531 # skip if k=0 %p A333531 if k>0 then %p A333531 lprint(n,k,m); %p A333531 fi; %p A333531 fi; %p A333531 od: %p A333531 od: %Y A333531 Cf. A000217, A309507, A333529, A333530. %Y A333531 If we only take triples [n,k,m] with n <= k <= m, the values of k and m are A198455 and A198456 respectively. %K A333531 nonn %O A333531 1,1 %A A333531 _N. J. A. Sloane_, Apr 01 2020