This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333538 #29 Apr 25 2021 13:12:29 %S A333538 1,5,21,91,355,456,666,2927,4946,6064,6188,6192,13858,14884,39592, %T A333538 54429,77603,87566,210905,245770,422097,585876,908602,976209,1240768, %U A333538 1340675,1573890,2589172,4740893,5168099,8525972,8646462,10478354,12636785,17943798,19524935 %N A333538 Indices of records in A333537. %C A333538 The first few primes that are not record values of A333537 are 2, 11, 53, 59, 71, 73, 89, 97, 103, 107 (see A333541, A333542). - _Robert Israel_, Apr 12 2020 %C A333538 a(72) > 5*10^9. - _David A. Corneth_, Apr 14 2020 %H A333538 David A. Corneth, <a href="/A333538/b333538.txt">Table of n, a(n) for n = 1..71</a> (first 36 terms from Robert Israel) %H A333538 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020. %p A333538 f:= proc(n) local k, p; %p A333538 p:= n; %p A333538 for k from 1 do %p A333538 p:= p*(n+k); %p A333538 if (p/(n+k+1))::integer then return n+k+1 fi %p A333538 od %p A333538 end proc: %p A333538 R:= 1: g:= 3: count:= 1: %p A333538 for n from 2 while count < 20 do %p A333538 x:= max(numtheory:-factorset(f(n))); %p A333538 if x > g then count:= count+1; g:= x; R:= R, n; fi %p A333538 od: %p A333538 R; # _Robert Israel_, Apr 12 2020 %t A333538 f[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n + k + 1], Return[FactorInteger[n + k + 1][[-1, 1]]]]]]; %t A333538 R = {1}; g = 3; count = 1; %t A333538 For[n = 2, count < 20, n++, x = f[n]; If[x > g, count++; g = x; AppendTo[R, n]]]; %t A333538 R (* _Jean-François Alcover_, Aug 17 2020, after _Robert Israel_ *) %Y A333538 Cf. A061836, A332558, A332559, A333537, A333541, A333542. %K A333538 nonn %O A333538 1,2 %A A333538 _N. J. A. Sloane_, Apr 12 2020 %E A333538 a(13)-a(20) from _Robert Israel_, Apr 12 2020 %E A333538 More terms from _Jinyuan Wang_, Apr 12 2020