This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333560 #15 May 01 2023 09:28:41 %S A333560 1,1,1,1,3,1,1,17,7,1,1,111,129,15,1,1,769,2815,769,31,1,1,5503,65537, %T A333560 47103,4097,63,1,1,40193,1579007,3080193,647167,20481,127,1,1,297727, %U A333560 38862849,208470015,109051905,7929855,98305,255,1,1,2228225,970522623,14413725697,19012780031,3271557121,90177535,458753,511,1 %N A333560 Square array read by antidiagonals: T(n,k) = Sum_{j = 0..n*k} binomial(n+j-1,j)*2^j; n,k >= 0. %C A333560 We conjecture that each column sequence satisfies the following supercongruences: %C A333560 Column k: T(n*p^j, k) == T(n*p^(j-1),k) ( mod p^(3*j) ) for prime p >= 5 and positive integers n and j. Some examples are given below. %F A333560 T(n,k) = Sum_{j = 0..n*k} binomial(n+j-1,j)*2^j. %F A333560 Conjectural o.g.f. for column k: 2^(k+1)*x*f'(k,(2^k)*x)/(2*f(k,(2^k)*x) - 1) + 1/(1 + x), where f(k,x) = Sum_{n >= 0} 1/((k+1)*n+1)*C((k+1)*n+1,n)* x^n. %e A333560 Square array begins %e A333560 |k=0 k=1 k=2 k=3 k=4 %e A333560 - - - - - - - - - - - - - - - - - - - - - - - - - - - - %e A333560 n=0 | 1 1 1 1 1 %e A333560 n=1 | 1 3 7 15 31 %e A333560 n=2 | 1 17 129 769 4097 %e A333560 n=3 | 1 111 2815 47103 647167 %e A333560 n=4 | 1 769 65537 3080193 109051905 %e A333560 n=5 | 1 5503 1579007 208470015 19012780031 %e A333560 n=6 | 1 40193 38862849 14413725697 3385776406529 %e A333560 n=7 | 1 297727 970522623 1011196362751 611732191969279 %e A333560 ... %e A333560 Examples of congruences for column k = 1: %e A333560 T(5,1) - T(1,1) = 5503 - 3 = (2^2)*(5^3)*11 == 0 ( mod 5^3 ). %e A333560 T(7,1) - T(1,1) = 297727 - 3 = (2^2)*(7^4)*31 == 0 ( mod 7^3 ). %e A333560 T(2*11,1) - T(2,1) = 5913649000782757889 - 17 = (2^4)*(3^2)*(11^3)*107*288357478039 == 0 ( mod 11^3 ). %e A333560 T(5^2,1) - T(5,1) = 2840491845703386005503 - 5503 = (2^7)*(3^3)*(5^6)*7*19*1123*352183001 == 0 ( mod 5^6 ). %p A333560 T := (n, k) -> add(binomial(n+j-1, j)*2^j, j = 0..n*k): %p A333560 T_col := k -> seq(T(n, k), n = 0..7): %p A333560 seq(print(T_col(k)), k = 0..10); %Y A333560 A119259 (column 1), A333561 (column 2), A333562 (column 3). Cf. A333563. %K A333560 nonn,easy,tabf %O A333560 0,5 %A A333560 _Peter Bala_, Mar 26 2020