This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333571 #14 Mar 27 2020 11:57:38 %S A333571 1,1,2,1,2,4,1,2,8,6,1,2,16,14,10,1,2,32,34,38,14,1,2,64,80,162,74,20, %T A333571 1,2,128,190,650,426,170,26,1,2,256,450,2728,2166,1594,338,34,1,2,512, %U A333571 1066,11250,12014,12908,4374,724,42,1,2,1024,2526,46984,62714,119364,47738,14640,1448,52 %N A333571 Square array T(n,k), n >= 1, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian paths in the n X k grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side. %H A333571 Seiichi Manyama, <a href="/A333571/b333571.txt">Antidiagonals n = 1..14, flattened</a> %e A333571 Square array T(n,k) begins: %e A333571 1, 1, 1, 1, 1, 1, 1, ... %e A333571 2, 2, 2, 2, 2, 2, 2, ... %e A333571 4, 8, 16, 32, 64, 128, 256, ... %e A333571 6, 14, 34, 80, 190, 450, 1066, ... %e A333571 10, 38, 162, 650, 2728, 11250, 46984, ... %e A333571 14, 74, 426, 2166, 12014, 62714, 340510, ... %o A333571 (Python) %o A333571 # Using graphillion %o A333571 from graphillion import GraphSet %o A333571 import graphillion.tutorial as tl %o A333571 def A(start, goal, n, k): %o A333571 universe = tl.grid(n - 1, k - 1) %o A333571 GraphSet.set_universe(universe) %o A333571 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333571 return paths.len() %o A333571 def A333571(n, k): %o A333571 if n == 1: return 1 %o A333571 s = 0 %o A333571 for i in range(1, n + 1): %o A333571 for j in range(k * n - n + 1, k * n + 1): %o A333571 s += A(i, j, k, n) %o A333571 return s %o A333571 print([A333571(j + 1, i - j + 2) for i in range(11) for j in range(i + 1)]) %Y A333571 Columns k=2-3 give: A333574, A333575. %Y A333571 Rows n=1-3 give: A000012, 2*A000012, A000079. %Y A333571 T(n,n) gives A121789(n-1). %Y A333571 Cf. A333509. %K A333571 nonn,tabl %O A333571 1,3 %A A333571 _Seiichi Manyama_, Mar 27 2020