This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333574 #42 Sep 09 2024 15:34:51 %S A333574 1,2,4,6,10,14,20,26,34,42,52,62,74,86,100,114,130,146,164,182,202, %T A333574 222,244,266,290,314,340,366,394,422,452,482,514,546,580,614,650,686, %U A333574 724,762,802,842,884,926,970,1014,1060,1106,1154,1202,1252,1302,1354,1406,1460 %N A333574 Number of Hamiltonian paths in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side. %C A333574 Conjecture: Numbers k such that A339399(k) = A103128(k). - _Wesley Ivan Hurt_, Nov 19 2021 %H A333574 Colin Barker, <a href="/A333574/b333574.txt">Table of n, a(n) for n = 1..1000</a> %H A333574 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A333574 G.f.: x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3)). %F A333574 From _Colin Barker_, Mar 27 2020: (Start) %F A333574 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. %F A333574 a(n) = (9 + (-1)^(1+n) - 4*n + 2*n^2) / 4 for n>1. (End) %F A333574 E.g.f.: ((4 - x + x^2)*cosh(x) + (5 - x + x^2)*sinh(x) - 2*(2 + x))/2. - _Stefano Spezia_, Jun 14 2023 %e A333574 a(1) = 1; %e A333574 +--+ %e A333574 a(2) = 2; %e A333574 + + *--* %e A333574 | | | | %e A333574 *--* + + %e A333574 a(3) = 4; %e A333574 + + +--* *--+ *--* %e A333574 | | | | | | %e A333574 * * *--* *--* * * %e A333574 | | | | | | %e A333574 *--* *--+ +--* + + %o A333574 (PARI) N=66; x='x+O('x^N); Vec(x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3))) %o A333574 (Python) %o A333574 # Using graphillion %o A333574 from graphillion import GraphSet %o A333574 import graphillion.tutorial as tl %o A333574 def A(start, goal, n, k): %o A333574 universe = tl.grid(n - 1, k - 1) %o A333574 GraphSet.set_universe(universe) %o A333574 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333574 return paths.len() %o A333574 def A333571(n, k): %o A333574 if n == 1: return 1 %o A333574 s = 0 %o A333574 for i in range(1, n + 1): %o A333574 for j in range(k * n - n + 1, k * n + 1): %o A333574 s += A(i, j, k, n) %o A333574 return s %o A333574 def A333574(n): %o A333574 return A333571(n, 2) %o A333574 print([A333574(n) for n in range(1, 25)]) %Y A333574 Column k=2 of A333571. %Y A333574 Cf. A333510. %Y A333574 Cf. A103128, A339399. %K A333574 nonn,easy %O A333574 1,2 %A A333574 _Seiichi Manyama_, Mar 27 2020