This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333581 #15 Jan 30 2022 15:56:04 %S A333581 1,16,378,10204,286395,8142184,232408228,6641558434,189856823709, %T A333581 5427696641303,155171211771501,4436158800822989,126824318787312712, %U A333581 3625748174071085779,103655548766966797516,2963380335725281547187,84719269552230266413889,2422015949371169505273833 %N A333581 Number of Hamiltonian paths in a 6 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner. %H A333581 Andrew Howroyd, <a href="/A333581/b333581.txt">Table of n, a(n) for n = 0..500</a> %H A333581 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %o A333581 (Python) %o A333581 # Using graphillion %o A333581 from graphillion import GraphSet %o A333581 import graphillion.tutorial as tl %o A333581 def A333580(n, k): %o A333581 if n == 1 or k == 1: return 1 %o A333581 universe = tl.grid(n - 1, k - 1) %o A333581 GraphSet.set_universe(universe) %o A333581 start, goal = 1, k * n %o A333581 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333581 return paths.len() %o A333581 def A333581(n): %o A333581 return A333580(6, 2 * n + 1) %o A333581 print([A333581(n) for n in range(10)]) %Y A333581 Cf. A014523, A333580. %K A333581 nonn %O A333581 0,2 %A A333581 _Seiichi Manyama_, Mar 27 2020 %E A333581 Terms a(10) and beyond from _Andrew Howroyd_, Jan 30 2022