This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333582 #17 Mar 28 2020 04:44:46 %S A333582 1,1,32,111,1670,10204,111712,851073,8261289,68939685,637113287, %T A333582 5521505724,49977297839,440051896440,3947537767621,34992551369200, %U A333582 312684850861298,2779712414621925,24796726969942763,220708765035288988,1967401456946216789,17520501580778152908 %N A333582 Number of Hamiltonian paths in a 7 X n grid starting at the lower left corner and finishing in the upper right corner. %H A333582 Seiichi Manyama, <a href="/A333582/b333582.txt">Table of n, a(n) for n = 1..500</a> %H A333582 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %o A333582 (Python) %o A333582 # Using graphillion %o A333582 from graphillion import GraphSet %o A333582 import graphillion.tutorial as tl %o A333582 def A333580(n, k): %o A333582 if n == 1 or k == 1: return 1 %o A333582 universe = tl.grid(n - 1, k - 1) %o A333582 GraphSet.set_universe(universe) %o A333582 start, goal = 1, k * n %o A333582 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333582 return paths.len() %o A333582 def A333582(n): %o A333582 return A333580(n, 7) %o A333582 print([A333582(n) for n in range(1, 25)]) %Y A333582 Row n=7 of A333580. %Y A333582 Cf. A014584. %K A333582 nonn %O A333582 1,3 %A A333582 _Seiichi Manyama_, Mar 27 2020