This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333583 #15 Jan 30 2022 15:55:59 %S A333583 1,64,6706,851073,114243216,15695570146,2178079125340,303568139329711, %T A333583 42388918310108440,5923750747499881068,828111786035239457647, %U A333583 115782566867663040724929,16189114623816733581826838,2263672174616450290622937801,316525123224847580237219904819 %N A333583 Number of Hamiltonian paths in an 8 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner. %H A333583 Andrew Howroyd, <a href="/A333583/b333583.txt">Table of n, a(n) for n = 0..200</a> %H A333583 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %o A333583 (Python) %o A333583 # Using graphillion %o A333583 from graphillion import GraphSet %o A333583 import graphillion.tutorial as tl %o A333583 def A333580(n, k): %o A333583 if n == 1 or k == 1: return 1 %o A333583 universe = tl.grid(n - 1, k - 1) %o A333583 GraphSet.set_universe(universe) %o A333583 start, goal = 1, k * n %o A333583 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333583 return paths.len() %o A333583 def A333583(n): %o A333583 return A333580(8, 2 * n + 1) %o A333583 print([A333583(n) for n in range(7)]) %Y A333583 Cf. A014523, A333580. %K A333583 nonn %O A333583 0,2 %A A333583 _Seiichi Manyama_, Mar 27 2020 %E A333583 Terms a(7) and beyond from _Andrew Howroyd_, Jan 30 2022