This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333584 #13 Mar 28 2020 05:20:27 %S A333584 1,1,128,624,28417,286395,8261289,114243216,2688307514,43598351250, %T A333584 928370853748,16331387665387,330593938169845,6062963019120077, %U A333584 119575303856316650,2240422461856052342,43592076562463162280,825830699757513748579,15955080499901505066753 %N A333584 Number of Hamiltonian paths in a 9 X n grid starting at the lower left corner and finishing in the upper right corner. %H A333584 Seiichi Manyama, <a href="/A333584/b333584.txt">Table of n, a(n) for n = 1..200</a> %H A333584 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %o A333584 (Python) %o A333584 # Using graphillion %o A333584 from graphillion import GraphSet %o A333584 import graphillion.tutorial as tl %o A333584 def A333580(n, k): %o A333584 if n == 1 or k == 1: return 1 %o A333584 universe = tl.grid(n - 1, k - 1) %o A333584 GraphSet.set_universe(universe) %o A333584 start, goal = 1, k * n %o A333584 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333584 return paths.len() %o A333584 def A333584(n): %o A333584 return A333580(n, 9) %o A333584 print([A333584(n) for n in range(1, 20)]) %Y A333584 Row n=9 of A333580. %Y A333584 Cf. A014584. %K A333584 nonn %O A333584 1,3 %A A333584 _Seiichi Manyama_, Mar 27 2020