This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333585 #19 Jan 30 2022 15:55:54 %S A333585 1,256,117204,68939685,43598351250,28467653231928,18879702000329222, %T A333585 12620031290571348940,8469937551020819909757, %U A333585 5696439378813116535052879,3835239247888770485464962184,2583576672252172117218927779417,1740899369113326621618848563838108 %N A333585 Number of Hamiltonian paths in a 10 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner. %H A333585 Andrew Howroyd, <a href="/A333585/b333585.txt">Table of n, a(n) for n = 0..200</a> %H A333585 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %o A333585 (Python) %o A333585 # Using graphillion %o A333585 from graphillion import GraphSet %o A333585 import graphillion.tutorial as tl %o A333585 def A333580(n, k): %o A333585 if n == 1 or k == 1: return 1 %o A333585 universe = tl.grid(n - 1, k - 1) %o A333585 GraphSet.set_universe(universe) %o A333585 start, goal = 1, k * n %o A333585 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333585 return paths.len() %o A333585 def A333585(n): %o A333585 return A333580(10, 2 * n + 1) %o A333585 print([A333585(n) for n in range(7)]) %Y A333585 Cf. A014523, A333580. %K A333585 nonn %O A333585 0,2 %A A333585 _Seiichi Manyama_, Mar 27 2020 %E A333585 Terms a(7) and beyond from _Andrew Howroyd_, Jan 30 2022