This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333599 #41 May 22 2020 09:46:41 %S A333599 0,1,2,1,7,1,20,1,54,1,143,1,376,1,986,1,2583,1,6764,1,17710,1,46367, %T A333599 1,121392,1,317810,1,832039,1,2178308,1,5702886,1,14930351,1,39088168, %U A333599 1,102334154,1,267914295,1,701408732,1,1836311902,1,4807526975,1,12586269024 %N A333599 a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2). %H A333599 Colin Barker, <a href="/A333599/b333599.txt">Table of n, a(n) for n = 0..1000</a> %H A333599 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/dOcagnesIdentity.html">d'Ocagne's Identity</a>. %H A333599 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,3,-1,-1). %F A333599 a(2n+1) = 1, and a(2n) = F(2n+2) - 1, and lim(a(2n+2)/a(2n)) = phi^2 by d'Ocagne's identity. %F A333599 a(n) = F(n) * F(n+1) mod (F(n) + F(n+1)) since F(n+2) := F(n+1) + F(n). %F A333599 From _Colin Barker_, Mar 28 2020: (Start) %F A333599 G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)). %F A333599 a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n>4. %F A333599 (End) %e A333599 a(0) = 0*1 mod 1 = 0; %e A333599 a(1) = 1*1 mod 2 = 1; %e A333599 a(2) = 1*2 mod 3 = 2; %e A333599 a(3) = 2*3 mod 5 = 1; %e A333599 a(4) = 3*5 mod 8 = 7. %t A333599 With[{f = Fibonacci}, Table[Mod[f[n] * f[n+1], f[n+2]], {n, 0, 50}]] (* _Amiram Eldar_, Mar 28 2020 *) %o A333599 (Python) %o A333599 def a(n): %o A333599 f1 = 0 %o A333599 f2 = 1 %o A333599 for i in range(n): %o A333599 f = f1 + f2 %o A333599 f1 = f2 %o A333599 f2 = f %o A333599 return (f1 * f2) % (f1 + f2) %o A333599 (PARI) a(n) = if (n % 2, 1, fibonacci(n+2) - 1); \\ _Michel Marcus_, Mar 29 2020 %o A333599 (PARI) concat(0, Vec(x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)) + O(x^45))) \\ _Colin Barker_, Mar 29 2020 %Y A333599 Equals A035508 interleaved with A000012. %Y A333599 Cf. A182126, A000045, A022461, A072565, A022462. %K A333599 nonn,easy %O A333599 0,3 %A A333599 _Adnan Baysal_, Mar 28 2020