This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333600 #18 Oct 26 2020 11:29:02 %S A333600 1,2,3,2,3,2,4,2,3,2,4,2,5,2,3,2,5,2,5,2,3,2,5,2,5,2,3,2,5,2,6,2,3,2, %T A333600 5,2,7,2,3,2,6,2,8,2,3,2,7,2,7,2,3,2,8,2,5,2,3,2,9,2,6,2,3,2,5,2,7,2, %U A333600 3,2,6,2,8,2,3,2,7,2,9,2,3,2,8,2,5,2,3 %N A333600 a(n) is the greatest possible length of a list of pairwise coprime distinct positive integers in arithmetic progression with greatest element n. %C A333600 The Green-Tao theorem implies that this sequence is unbounded. %H A333600 Robert Israel, <a href="/A333600/b333600.txt">Table of n, a(n) for n = 1..10000</a> %H A333600 Wikipedia, <a href="https://en.wikipedia.org/wiki/Green%E2%80%93Tao_theorem">Green-Tao theorem</a> %F A333600 a(2*n) = 2 for any n > 0. %F A333600 a(prime(n)) > A109831(n) for any n > 1. %F A333600 a(n) <= A020639(n) for n > 1. - _Robert Israel_, Apr 03 2020 %e A333600 The first terms, alongside a corresponding list, are: %e A333600 n a(n) List %e A333600 -- ---- ---- %e A333600 1 1 (1) %e A333600 2 2 (1, 2) %e A333600 3 3 (1, 2, 3) %e A333600 4 2 (3, 4) %e A333600 5 3 (1, 3, 5) %e A333600 6 2 (5, 6) %e A333600 7 4 (1, 3, 5, 7) %e A333600 8 2 (7, 8) %e A333600 9 3 (7, 8, 9) %e A333600 10 2 (9, 10) %e A333600 11 4 (5, 7, 9, 11) %e A333600 12 2 (11, 12) %e A333600 13 5 (5, 7, 9, 11, 13) %p A333600 f:= proc(n) local d, m, p, x, mmax; %p A333600 if n::even then return 2 fi; %p A333600 if n mod 3 = 0 then return 3 fi; %p A333600 mmax:= 1; %p A333600 for d from 1 to n-1 do %p A333600 if n <= mmax*d then return mmax fi; %p A333600 p:= n; %p A333600 for m from 1 to n/d do %p A333600 x:= n - d*m; %p A333600 if igcd(x,p) > 1 then break fi; %p A333600 p:= p*x; %p A333600 od; %p A333600 mmax:= max(mmax, m) %p A333600 od; %p A333600 end proc: %p A333600 f(1):= 1: %p A333600 map(f, [$1..100]); # _Robert Israel_, Apr 03 2020 %t A333600 a[n_] := Module[{d, m, p, x, mmax}, If[EvenQ[n], Return[2]]; If[Mod[n, 3] == 0, Return[3]]; mmax = 1; For[d = 1, d <= n-1, d++, If[n <= mmax d, Return[mmax]]; p = n; For[m = 1, m <= n/d, m++, x = n - d m; If[GCD[x, p] > 1, Break[]]; p = p x]; mmax = Max[mmax, m]]]; %t A333600 a[1] = 1; %t A333600 Array[a, 100] (* _Jean-François Alcover_, Oct 25 2020, after _Robert Israel_ *) %o A333600 (PARI) a(n) = { if (n%2==0, return (2), my (v=1); for (s=1, n-1, if (v>=ceil(n/s), break); my (p=1, w=0); forstep (k=n, 1, -s, if (gcd(p,k)==1, p*=k; w++, break)); v=max(v,w)); return (v)) } %Y A333600 Cf. A020639, A109831. %K A333600 nonn,look %O A333600 1,2 %A A333600 _Rémy Sigrist_, Mar 28 2020