This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333603 #14 Mar 13 2023 16:21:59 %S A333603 1,32,1584,88418,4999752,283163450,16039767268,908585449166, %T A333603 51467614908516,2915428131919456,165146980589118258, %U A333603 9354895388703582168,529916244425510621368,30017569886372177468776,1700371542421991554910438,96319035592388073867700014,5456076149237165677047910650 %N A333603 Number of directed Hamiltonian walks from NW to SW corners of a 7 X (2*n+1) grid. %H A333603 Seiichi Manyama, <a href="/A333603/b333603.txt">Table of n, a(n) for n = 0..500</a> %F A333603 Conjecture: a(n)= 85*a(n-1) -1932*a(n-2) +20403*a(n-3) -116734*a(n-4) +386724*a(n-5) -815141*a(n-6) +1251439*a(n-7) -1690670*a(n-8) +2681994*a(n-9) -4008954*a(n-10) +3390877*a(n-11) -1036420*a(n-12) -178842*a(n-13) +92790*a(n-14) +17732*a(n-15) -5972*a(n-16) +1728*a(n-17) +144*a(n-18). - _R. J. Mathar_, Mar 13 2023 %o A333603 (Python) %o A333603 # Using graphillion %o A333603 from graphillion import GraphSet %o A333603 import graphillion.tutorial as tl %o A333603 def A271592(n, k): %o A333603 if k == 1: return 1 %o A333603 universe = tl.grid(k - 1, n - 1) %o A333603 GraphSet.set_universe(universe) %o A333603 start, goal = 1, n %o A333603 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333603 return paths.len() %o A333603 def A333603(n): %o A333603 return A271592(7, 2 * n + 1) %o A333603 print([A333603(n) for n in range(20)]) %Y A333603 Row n=7 of A271592 (with 0 omitted). %Y A333603 Cf. A333582. %K A333603 nonn %O A333603 0,2 %A A333603 _Seiichi Manyama_, Mar 28 2020